改进YOLOv8算法的膝关节骨性关节炎检测分类
作者:
作者单位:

1.沈阳理工大学 自动化与电气工程学院;2.沈阳理工大学 经济管理学院MBA教育中心

中图分类号:

TP391.41

基金项目:

国家引才引智示范基地(YZJD2023005)


Improved YOLOv8 algorithm for classification of knee osteoarthritis detection
Author:
Affiliation:

Shenyang Ligong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    膝关节骨性关节炎常因检查时分类不明确而导致误诊,影响治疗效果,现有的检测方法在检测精度和准确区分病变类别方面表现不佳。针对上述问题本文提出了一种基于YOLOv8改进的膝关节骨性关节炎检测分类算法,旨在提高检测分类的准确性。首先,设计了分布映射模块(V-PENet),通过对输入的图像进行预处理,将复杂的数据分布,统一映射成简单的数据分布,帮助YOLO网络更好的训练。同时,增添了语义感知模块(PTB),提升模型上下文感知能力,增强其对全局信息的理解。其次,引入了CA坐标注意力机制,丰富特征信息,进一步增强模型对中尺度目标信息的捕捉能力。最后,采用WIoUv3损失函数替代原有的CIoU损失函数,优化定位精度。与基准模型YOLOv8n相比,准确率提升9.9%,mAP@0.5达到81.2%,mAP0.5:0.95达到64.3%。相较其它检测方法,本文提出的改进模型在准确性上具有显著优势,能够更好的满足膝关节骨性关节炎检测分类的需求。

    Abstract:

    Knee osteoarthritis is often misdiagnosed due to unclear categorization during examination, which affects the therapeutic effect, and existing detection methods perform poorly in terms of detection accuracy and accurate differentiation of lesion categories. To address the above problems this paper proposes an improved classification algorithm based on YOLOv8 for the detection of osteoarthritis of the knee joint, aiming to improve the accuracy of detection and classification. First, the distribution mapping module (V-PENet) is designed to help YOLO network to be trained better by preprocessing the input images and mapping the complex data distributions, uniformly, into simple data distributions. Meanwhile, a semantic perception module (PTB) is added to enhance the model's context-awareness ability and its understanding of global information. Secondly, the CA coordinate attention mechanism is introduced to enrich the feature information and further enhance the model's ability to capture mesoscale target information. Finally, the WIoUv3 loss function is used to replace the original CIoU loss function to optimize the positioning accuracy. Compared with the benchmark model YOLOv8n, the accuracy is improved by 9.9%, mAP@0.5 reaches 81.2% and mAP0.5:0.95 reaches 64.3%. Compared with other detection methods, the improved model proposed in this paper has a significant advantage in accuracy and can better meet the needs of knee osteoarthritis detection and classification.

    参考文献
    相似文献
    引证文献
引用本文

李宏达,杨南,姚东艳.改进YOLOv8算法的膝关节骨性关节炎检测分类[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-18
  • 最后修改日期:2024-12-16
  • 录用日期:2024-12-26

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司