四旋翼飞行器固定时间量化自适应控制
作者:
作者单位:

南京信息工程大学 自动化学院

中图分类号:

TP273

基金项目:

‘青蓝工程’资助


Fixed-time quantized adaptive control for quadrotors
Author:
Affiliation:

School of Automation,Nanjing University of Information Science and Technology

Fund Project:

R2023Q03

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对具有模型不确定性和量化输入的四旋翼飞行器,本文在量化输入下将固定时间命令滤波与反步法相结合,提出了一种新的控制策略。首先,将传统反步法中的虚拟控制信号作为固定时间命令滤波的输入,可以直接得到虚拟控制信号的导数,有效的避免了传统反步法所带来的“微分爆炸”问题,并且设计了滤波误差补偿信号,填补了滤波误差影响系统性能这一缺陷。接着设计了量化参数自适应律,在量化参数先验信息不确定的情况下仍然可以适用。然后,验证了闭环系统中所有信号都是固定时间有界的,并且在固定时间内,四旋翼飞行器的位置和姿态跟踪误差在固定时间内能够到达原点的充分小区域。最后给出了仿真实验,验证了控制方法的可行性和优越性。

    Abstract:

    For the quadrotor with model uncertainty and quantised input, this paper proposes a new control strategy by combining fixed-time command filtering with backstepping under quantised input. Firstly, the virtual control signal in the traditional backstepping method is used as the input of fixed-time command filtering, so that the derivative of the virtual control signal can be obtained directly, which effectively avoids the problem of ‘differential explosion’ brought by the traditional backstepping method, and the filtering error compensation signal is designed to fill the defect that the filtering error affects the system performance. Then, an adaptive law for the quantisation parameters is designed, which can still be applied when the a priori information of the quantisation parameters is uncertain. Then, it is verified that all the signals in the closed-loop system are bounded at fixed time, and the position and attitude tracking errors of the quadrotor can reach a sufficiently small region of the origin at fixed time. Finally, simulation experiments are given to verify the feasibility and superiority of the control method.

    参考文献
    [1] Abdelmaksoud, Sherif I.,Mailah, Musa, Abdallah, Ayman M. Control Strategies and Novel Techniques for Autonomous Rotorcraft Unmanned Aerial Vehicles:A Review[J]. IEEE ACCESS, 2020, 8: 195142-19516 9.
    [2] Miranda C R, Aguilar L T, Herrero B J E. Reduction of Power Consumption on Quadrotor Vehicles via Trajectory Design and a Controllergains Tuning Stage[J]. Aerospace Science and Technology, 2018, 78: 280-296.
    [3] 杨荟憭, 姜斌, 张柯. 四旋翼直升机姿态系统的直接自修复控制 [J]. 控制理论与应用, 2014, 31(8): 1053-1060YANG Hui-liao,JIANG Bin,ZHANG Ke. Direct self-repairing control for four-rotor helicopter attitude systems [J]. Control Theory and Applications, 2014, 31(8): 1053-1060
    [4] Xu, Rong, and ümit ?zgüner. "Sliding mode control of a class of underactuated systems."SAutomaticaS44.1 (2008): 233-241.
    [5] Xie W, Cabecinhas D, Cunha R, et al. Adaptive backstepping control of a quadcopter with uncertain vehicle mass, moment of inertia, and disturbances."SIEEE Transactions on Industrial ElectronicsS69.1 (2021): 549-559.
    [6] 王宁, 王永, 余明裕. 四旋翼飞行器自适应动态面轨迹跟踪控制 [J]. 控制理论与应用, 2017, 34(9): 1185-1194.WANG Ning,WANG Yong,YU Mingyu. Adaptive dynamic surface trajectory tracking control of a quadrotor unmanned aerial vehicle [J]. Control Theory and Applications, 2017, 34(9): 1185-1194.
    [7] Yu J, Shi P, Dong W, Yu H, Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5962-5970.
    [8] Yu J P, Shi P, Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems[J]. Automatica, 2018, 92: 173-180.
    [9] Zhang X Y, Wang Y, Zhu G Q, et al. Compound adaptive fuzzy quantized control for quadrotor and its experimental verification[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1121-1133.
    [10] Shao X Y, Sun G H, Yao W R, et al. Adaptive Sliding Mode Control for Quadrotor UAVs With Input Saturation[J]. IEEE-ASME Transactions on Mechatronics, 2022, 27(3): 1498-1509.
    [11] Zhou J, Wei C Y, Yang G H. Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal[J]. IEEE Transactions on Automatic Control, 2014, 59(2): 460-464.
    [12] Liu Z, Wang F, Zhang Yun, C. L. Philip Chen. Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 524-534.
    [13] Qian C J, Lin W. A Continuous Feedback Approach to Global Strong Stabilization of Nonlinear Systems[J]. IEEE Transactions on Automatic Control, 2001, 46(7): 1061-1079.
    [14] Yang H J, Ye D. Adaptive fixed-time bipartite tracking consensus control for unknown nonlinear multi-agent systems: an information classification mechanism[J]. Information Sciences, 2018, 459: 238-254.
    [15] Zuo Z Y, Tie L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems[J]. International Journal of Systems Science, 2016, 47(6): 1366-1375.
    [16] Cruz-zavala E, Moreno J A, Fridman L M. Uniform robust exact differentiator[J]. IEEE Transactions on Automatic Control, 2011, 56(11): 2727-2733
    [17] Ba D S, Li Y X, Tong S C. Fixed-time adaptive neural tracking control for a class of uncertain nonstrict nonlinear systems[J]. Neurocomputing, 2019, 363: 273-280.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁群超,宋公飞,尹资荣,安述祥.四旋翼飞行器固定时间量化自适应控制[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:13
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-16
  • 最后修改日期:2024-12-06
  • 录用日期:2024-12-11

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司