VRD-YOLO:基于YOLOv5s改进的实时车载影像道路病害检测模型
DOI:
作者:
作者单位:

1.南京信息工程大学;2.北京中科鹏宇科技有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(42371447);江苏省研究生科研与实践创新计划(KYCX24_1492)


VRD-YOLO: Real-Time Vehicle-mounted-images Road Damage Detection Based on Improved YOLOv5s
Author:
Affiliation:

1.Nanjing University of Information Science and Technology;2.Beijing Zhongke Pengyu Technology Company

Fund Project:

National Natural Science Foundation of China(42371447); Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX24_1492]

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对车载影像中的道路病害尺寸差异大,小尺度病害多,导致检测精度低的问题,本文提出一种基于YOLOv5s改进的实时车载影像道路病害检测模型VRD-YOLO(Vehicle-mounted-images Road Damage Detection -YOLO)。首先,本文提出了通道混合滑动Transformer模块,增强模型全局上下文建模能力,强化细粒度道路病害语义特征信息提取;其次,引入具有跨层融合和跨尺度融合特性的广义特征金字塔,扩大网络感受野,强化多尺度病害特征融合;再次,设计动态检测头,实现尺度感知、空间感知和任务感知,优化模型特征响应,进一步提升模型的检测性能。最后,构建了车载影像道路病害数据集VIRDD(Vehicle-mounted Images Road Damage Dataset),扩充了现有道路病害数据集数量及类型,并基于该数据集进行消融和对比实验。实验结果表明:VRD-YOLO在VIRDD数据集上获得74.45%mAP@0.5的检测精度的同时检测速度可达到28.56FPS,与YOLOv5s模型相比精确度、召回率、F1分数和平均精度均值分别提升了2.79、2.32、2.54和3.19个百分点。同时,通过与其他六种经典及主流目标检测模型比较,VRD-YOLO以9.68M最少模型参数量获得了最佳的检测精度,验证了本文方法的有效性和优越性。

    Abstract:

    To accurately detect road damages with large size differences and small scales in Vehicle-mounted-images, this paper presents a real-time Vehicle-mounted-images road damage detection model based on improved YOLOv5s, termed as VRD-YOLO(Vehicle-mounted-images Road Damage Detection -YOLO). Firstly, a Channel Mix Slide Transformer module is proposed, which enhances the model's global context modeling capability and strengthens the extraction of fine-grained road lesion semantic feature information. Secondly, a generalized feature pyramid with cross-layer fusion and cross-scale fusion is introduced to expand the network sensing field and strengthen the fusion of multi-scale damage features. Thirdly, to optimize the model feature response and improve the model’s detection performance, a dynamic detection head is designed to achieve scale perception, spatial perception, and task perception. Finally, the Vehicle-mounted Images Road Damage Dataset (VIRDD) was constructed to expand the number and type of existing road damage datasets, and ablation and comparison experiments were conducted based on this dataset. The experimental results show that VRD-YOLO achieves a detection accuracy of 74.45% mAP@0.5 on the VIRDD dataset, with a detection speed reaching 28.56 FPS. Compared to the YOLOv5s model, VRD-YOLO improves the precision, recall, F1 score, and mean average precision by 2.79, 2.32, 2.54, and 3.19 percentage points, respectively. Additionally, compared with six other classical and novel object detection models, VRD-YOLO attains the highest detection accuracy with the smallest model parameter count of 9.68 million, verifying the effectiveness and superiority of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

黄文龙,赵好好,康健,支晓栋,王东川,周维勋,倪欢,管海燕. VRD-YOLO:基于YOLOv5s改进的实时车载影像道路病害检测模型[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2024-11-19
  • 录用日期:2024-11-20
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司