基于改进YOLOv8的桥梁裂缝无人机检测方法
DOI:
作者:
作者单位:

1.重庆交通大学智慧城市学院;2.重庆市地矿测绘院有限公司;3.招商局重庆公路工程检测中心有限公司;4.中国十九冶集团有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市技术创新与应用发展专项重点项目:“山区交通基础设施结构安全前置预警关键技术研究”(CSTB2022TIAD-KPX0098)


Drone-based bridge crack detection method based on improved YOLOv8
Author:
Affiliation:

1.School of Smart City, Chongqing Jiaotong University;2.Chongqing Institute of Geology and Mineral Resources;3.China Merchants Chongqing Highway Engineering Testing Center Co., Ltd.;4.China 19th Metallurgical Corporation

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对桥梁裂缝识别效率低、实时性差等问题,本文提出一种基于改进YOLOv8模型的桥梁裂缝无人机图像检测方法。首先,将动态蛇形卷积核融入YOLOv8骨干部分中的C2f模块,以增强裂缝特征提取能力;然后,引入CAM模块,提升小目标检测能力;最后,通过优化预测框损失函数,减少了低质量数据集对检测结果的影响。实验结果表明,改进后模型的GFOLPs达到14.4, mAP@50达到94%,较基础模型实现了较大的精度提升,检测速度达到147帧/s,能够满足无人机实时裂缝检测需求。

    Abstract:

    To tackle the current challenges of low efficiency, subpar performance, and inadequate real-time capabilities in bridge crack detection, this paper introduces an improved YOLOv8 model-based drone image detection method for bridge cracks. Firstly, the dynamic snake convolution kernel is integrated into the C2f module in the backbone of YOLOv8 to enhance the crack feature extraction ability. Then, the CAM module was introduced to improve the ability of small target detection. Finally, the influence of low-quality data sets on detection results was reduced by optimizing the prediction box loss function. The experimental results show that the GFOLPs of the improved model reaches 14.4 and mAP@50 reaches 94%. Compared with the basic model, the accuracy of the improved model is greatly improved, and the detection speed reaches 147 frames /s, which can meet the requirements of real-time crack detection by UAVs.

    参考文献
    相似文献
    引证文献
引用本文

唐菲菲,杨浩,刘娜,姜敏,庞荣,张朋,周泽林.基于改进YOLOv8的桥梁裂缝无人机检测方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-27
  • 最后修改日期:2024-11-27
  • 录用日期:2024-11-28
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司