TireYOLO:轮胎胎侧压印文字检测算法
DOI:
作者:
作者单位:

安徽工程大学 计算机与信息学院

作者简介:

通讯作者:

中图分类号:

TP751;TP183

基金项目:

国家自然科学基金(62302011);安徽未来技术研究院企业合作项目(2023qyhz11); 安徽工程大学校企合作项目(HX-2023-09-050)


TireYOLO: Algorithm for detecting text embossed on the sidewall of tyres
Author:
Affiliation:

School of Computer and information,Anhui Polytechnic University

Fund Project:

National Natural Science Foundation of China, No. 62302011; Anhui Institute of Future Technology Enterprise Cooperation Project (2023qyhz11); School-enterprise Cooperation Project of Anhui Polytechnic University (HX-2023-09-05)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轮胎胎侧压印文字区域受到深色背景干扰,现有算法检测效果较差,无法准确执行检测任务的难题,本文提出了一种改进YOLOv8s的轮胎胎侧压印文字区域检测算法TireYOLO,用于检测轮胎胎侧压印文字区域。首先,提出了一种新的轻量化特征提取模块RepNCSPELAN4_CAA,用于替换YOLOv8s原有的主干网络的C2f模块,通过CAA注意力机制更好的捕捉上下文特征信息,提高了模型的精度的同时降低了计算代价。其次,为了在保持轻量化的同时更好的进行特征融合,采用了一种动态采样的轻量化大感受野特征融合颈部结构DyLKVHSPAN,通过改进HSFPN网络结构,提出了一种高效特征融合网络HSPAN,同时通过Dysample上采样算子进行动态采样,并且提出一种大感受野的特征融合模块UniLKVoVCSP,使DyLKVHSPAN在保持轻量化的同时利用大感受野更好融合特征。最后,提出了一种低计算量检测头DWLHead,重新设计了原有检测头的结构,在降低计算量的基础上提高了检测性能。实验结果表明,与YOLOv8s相比,本文提出的TireYOLO在轮胎胎侧关键信息所在区域目标检测的 mAP@0.5:0.95 上提高了2.5个百分点,在轻量化的效果上,参数量降低了48.4%,计算量降低了49.6% ,证明了本文所提出的算法在检测轮胎侧文字区域方面的优越性。

    Abstract:

    To address the problem that existing algorithms cannot accurately perform the detection task of tire side pressure marking text area due to interference from dark background, this paper proposes a tire side pressure marking text area detection algorithm TireYOLO based on the improved YOLOv8s. Firstly, a lightweight feature extraction module RepNCSPELAN4_CAA is proposed to replace the C2f module in the main body network of YOLOv8s, which can capture contextual feature information better through the CAA attention mechanism and improve model accuracy while reducing computational cost. Secondly, in order to better fuse features while keeping lightweight, a dynamic sampling lightweight large receptive field feature fusion neck structure DyLKVHSPAN is adopted, and an efficient feature fusion network HSPAN is proposed by improving the HSFPN network structure. At the same time, a large receptive field feature fusion module UniLKVoVCSP is proposed to dynamically sample features through the Dysample upsampling operator, so that DyLKVHSPAN can fuse features better with large receptive field while keeping lightweight. Finally, a low computational cost detection head DWLHead is proposed, which redesigns the structure of the original detection head to improve detection performance while reducing computational cost. Experimental results show that compared with YOLOv8s, the TireYOLO algorithm improves the mAP0.5:0.95 of the key information area detection in tire side by 2.5 percentage points, reduces the number of parameters by 48.4%, and reduces the computational cost by 49.6%, verifying the superiority of the proposed algorithm in detecting tire side text area.

    参考文献
    相似文献
    引证文献
引用本文

李萌阳,严楠. TireYOLO:轮胎胎侧压印文字检测算法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-18
  • 最后修改日期:2024-12-02
  • 录用日期:2024-12-02
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司