基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测
DOI:
作者:
作者单位:

1.东华理工大学,经济与管理学院;2.东华理工大学,理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(71961001):东华理工大学研究生创新基金(DHYC-202225)。


Short-term load prediction based on CEEMDAN and HBA-BiGRU-SelfAttention
Author:
Affiliation:

1.East China University of Technology, College of Economic and Management;2.East China University of Technology,College of Science

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确的电力负荷预测对减少资源浪费、保证电力系统稳定、安全运行起着至关重要的作用。针对负荷数据存在非线性、时序性等多方面因素导致的预测精度不足等问题,提出了一种基于CEEMDAN和HBA-BiGRU-SelfAttention短期负荷预测模型。首先采用随机森林算法对气象因素进行特征提取,在保证数据特征的同时,降低数据的复杂度;其次采用自适应噪声完备集合经验模态分解算法对原始负荷数据进行分解,得到若干较为平稳的模态分量;然后将经过特征提取的气象因素和模态分量作为输入数据,利用BiGRU-SelfAttention模型进行预测,针对BiGRU-SelfAttention模型的超参数难以选取最优解的问题,引入蜜獾算法对BiGRU-SelfAttention模型的超参数进行寻优;最后,将子序列预测结果叠加,得到最终预测结果。以某地实际负荷数据为数据集进行对比试验,验证了该模型具有较高的预测精度,可以为电力系统稳定运行提供可靠依据。

    Abstract:

    In order to solve the problem of insufficient forecasting accuracy caused by many factors such as nonlinear and time series of load data, a short-term load forecasting model based on CEEMDAN and HBA-BiGRU-SelfAttention was proposed. Firstly, the random forest algorithm is used to extract the features of meteorological factors, which ensures the characteristics of data and reduces the complexity of data. Secondly, the adaptive noise complete set empirical mode decomposition algorithm is used to decompose the original load data, and some relatively stable modal components are obtained. Then, meteorological factors and modal components extracted by feature are taken as input data, and BiGRU-SelfAttention model is used for prediction. For the problem that it is difficult to select the optimal solution for hyperparameters of BiGRU-SelfAttention model, The Honey Badger algorithm is introduced to optimize the hyperparameters of BiGRU-SelfAttention model. Finally, the subsequence prediction results are superimposed to obtain the final prediction results. The comparison test with the actual load data of a certain place proves that the model has high prediction accuracy and can provide reliable basis for the stable operation of power system.

    参考文献
    相似文献
    引证文献
引用本文

朱婷,颜七笙.基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-25
  • 最后修改日期:2024-10-24
  • 录用日期:2024-10-31
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司