基于CBDAE和TCN-Transformer的工业传感器时间序列预测
DOI:
作者:
作者单位:

1.新疆大学电气工程学院;2.新疆大学 电气工程学院

作者简介:

通讯作者:

中图分类号:

TP212???????

基金项目:

国家自然科学基金(62303394);新疆维吾尔自治区自然科学基金(2022D01C694);新疆维吾尔自治区高校基本科研业务费科研项目(XJEDU2023P025)


Industrial Sensor Time Series Prediction Based on CBDAE and TCN-Transformer
Author:
Affiliation:

School of Electrical Engineering, Xinjiang University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性。为此,本文提出了一种新型时间序列预测框架,结合改进的对比盲去噪自编码器(Contrast Blind Denoising Autoencoder, CBDMAE)和TCN-Transformer网络,称为MoCo-CBDAE-TCN-Transformer。该框架通过引入额外的动量编码器、动态队列和信息噪声对比估计(Information Noise-Contrastive Estimation, InfoNCE)正则化,增强了对时间序列数据动态特征的捕捉能力,并有效利用历史负样本信息。在无需噪声先验知识和传感器纯净数据的前提下,通过捕捉和对比时间相关性和噪声特征,实现传感器数据的盲去噪。去噪后的数据通过TCN-Transformer网络进行时间序列预测,该网络结合了残差连接和膨胀卷积的优势以及Transformer的注意力机制,显著提高了预测的准确性和效率。最后,在公开的四缸过程数据集上进行仿真验证,实验结果表明,与传统的去噪方法和时间序列预测模型相比,本文设计的模型能够获得更好的去噪效果和更高的预测精度,其实时处理能力适合部署在实际的工业环境中,为工业物联网中的数据处理和分析提供了一种有效的技术方案。。

    Abstract:

    In real-world industrial IoT environments, sensor data is often contaminated by external noise, making it difficult to obtain clean data, which affects the accuracy of data-driven time series prediction tasks. To address this issue, this paper proposes a novel time series prediction framework that combines an improved contrast blind denoising autoencoder (CBDMAE) and a TCN-Transformer network, called MoCo-CBDAE-TCN-Transformer. The framework enhances its ability to capture dynamic features of time series data by introducing additional momentum encoders, dynamic queues, and information noise-contrastive estimation (InfoNCE) regularization. It effectively utilizes historical negative sample information by capturing and comparing temporal correlations and noise features. Without prior knowledge of noise and clean sensor data, the network achieves blind denoising of sensor data by capturing and comparing temporal correlations and noise features. The denoised data is then predicted using a TCN-Transformer network, which combines the advantages of TCN"s residual connections and dilated convolutions, as well as Transformer"s attention mechanism, significantly improving prediction accuracy and efficiency. Finally, the experimental results show that, compared with traditional noise removal methods and time series prediction models, the model designed in this paper can achieve better noise removal effects and higher prediction accuracy through simulation verification on a public four-cylinder process dataset. Its real-time processing capability is suitable for deployment in actual industrial environments and provides an effective technical solution for data processing and analysis in industrial Internet of Things.

    参考文献
    相似文献
    引证文献
引用本文

许涛,南新元,蔡鑫,赵濮.基于CBDAE和TCN-Transformer的工业传感器时间序列预测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-24
  • 最后修改日期:2024-10-09
  • 录用日期:2024-10-09
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司