一种增强自适应性和可解释性的元学习框架
DOI:
作者:
作者单位:

1.广西可信软件重点实验室,桂林电子科技大学;2.广西图像图形与智能处理重点实验室 桂林电子科技大学;3.防灾科技学院

作者简介:

通讯作者:

中图分类号:

基金项目:

广西重点研发计划项目(桂科AB21220023);国家自然科学基金(42164002);广西研究生教育创新项目(YCSW2023308),


A Framework for Enhanced Adaptability and Interpretability in Meta-Learning
Author:
Affiliation:

1.Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology;2.Guangxi Key Laboratory of Image and Graphic intelligent processing, Guilin University of Electronic Technology;3.School of Information Engineering, Institute of Disaster Prevention

Fund Project:

The Key R&D Program of Guangxi under Grant(AB21220023) ;The National Natural Science Foundation of China (42164002); Guangxi Graduate Education Innovation Project(YCSW2023308)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在少样本学习场景中,模型无关的元学习(Model-Agnostic Meta-Learning,MAML)以其独立于特定基模型的灵活性和适用性而闻名。然而,MAML及其变体缺少对任务特定的特征(如特征通道)进行适应性调整,它们依赖全局初始参数,固定内环步数,训练过程缺乏可解释性。本文提出一种使用逻辑回归和通道注意力的快速可解释且自适应的方法(Meta-Learning with Logistic Regression and Channel Attention, ML-LRCA),目标是通过适应性调整任务特定的通道权重和利用逻辑回归快速适应任务自适应损失函数来增强框架的自适应性和可解释性。通过在多个开源数据集上开展少样本分类、跨域少样本分类和少样本回归实验,结果表明本文提出的ML-LRCA方法性能提升较高。

    Abstract:

    In few-shot learning scenarios, Model-Agnostic Meta-Learning (MAML) is renowned for its flexibility and applicability independent of specific base model. However, MAML and its variants lack the ability to adaptively adjust task-specific features, such as feature channels, and rely on global initial parameters with fixed inner-loop step numbers, resulting in a training process that lacks interpretability. This paper proposes a rapid, interpretable, and adaptive method using logistic regression and channel attention (ML-LRCA). The goal is to enhance the adaptability and interpretability of the framework by adaptively adjusting task-specific channel weights and utilizing logistic regression to swiftly adapt to task-specific adaptive loss functions. By conducting experiments on multiple open-source datasets for few-shot classification, cross-domain few-shot classification, and few-shot regression, the results indicate that the proposed ML-LRCA method achieves significant performance improvement.

    参考文献
    相似文献
    引证文献
引用本文

徐艳琳,王茂发,文益民,颜丙辰,杨凤山,郭文恒,蒋俊.一种增强自适应性和可解释性的元学习框架[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-15
  • 最后修改日期:2024-09-30
  • 录用日期:2024-10-08
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司