具有高选频特性和高角度稳定性的无通孔透射式极化扭转超表面
作者单位:

1.南京信息工程大学;2.南京邮电大学

基金项目:

中国国家自然科学基金、江苏省自然科学基金


A Vialess Transmissive Polarization Rotation Metasurface With High Frequency Selectivity and Good Angular Stability
Author:
Affiliation:

1.Nanjing University of Information Science &2.Technology;3.Technology136;4.Nanjing University of Posts and Telecommunications

Fund Project:

61701249和62071238、BK20160959和BK20191399

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文提出了一种无通孔透射型极化扭转超表面(PRTM)结构,该PRTM可将线极化入射波的极化方向旋转90°,且具有优秀的频率选择特性和角度稳定性。PRTM采用三层金属贴片和两层基板来实现,其中顶部与底部金属层为相互垂直的极化栅,中间金属层为四角加载矩形贴片的双模矩形环组成的阵列。该PRTM具有两个交叉极化传输极点和一个交叉极化传输零点,其中交叉极化传输零点位置灵活可调。由于交叉极化传输零点的引入,可实现PRTM的上阻带或下阻带具有优秀的频率选择特性。同时,本文对PRTM单元的物理尺寸参数进行了研究,并总结得出了一套PRTM单元设计流程。最后,对两个中心频率f0为15GHz的PRTM样本进行加工和测量,其中测量结果与仿真结果吻合良好。

    Abstract:

    A vialess polarization rotation transmission metasurface (PRTM) with high frequency selectivity is proposed, which can rotate the polarization direction of the linearly polarized incident wave by 90° and has excellent frequency selection characteristics and angular stability. The PRTM unit cell has been implemented with three metallic layers which are separated by two substrate layers, in which the top and bottom metallic layers are the polarizing grids which are perpendicular to each other. Meanwhile, the middle metallic layer is consisted of the array of dual-mode rectangular ring which is miniaturized with four patches additionally loaded at the corners. The PRTM unit cell has two cross-polarized transmission poles and one cross-polarized transmission null, where the cross-polarized transmission zero position is flexibly adjustable.Due to the introduction of the cross-polarized transmission null, the upper or lower stop band of the PRTM unit cell can be achieved with excellent frequency selection characteristics. Then the physical size parameters of the PRTM unit cell has been studied, and a set of design processes of the PRTM unit cell are summarized. Finally, two PRTM prototypes with the center frequency of 15GHz have been fabricated and measured, and measurement results were in good agreement with the simulation results.

    参考文献
    参 考 文 献
    [2] [1]CHANDRASEKAR V, BEAUCHAMP R M, BECHINI R. Introduction to Dual Polarization Weather Radar: Fundamentals, Applications, and Networks [M]. London: Cambridge University Press, 2023: 2-3.
    [3] [2]ZHAO Yu-tong, ZHANG Jun-jie, Wu Bian. Low profile reflective polarization conversion metasurface with high frequency selectivity[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10614-10622.
    [4] [3]REN Jun-yi, JIANG Wen, ZHANG Kun-zhe, et al. A high-gain circularly polarized Fabry–Perot antenna with wideband low-RCS property [J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 853-856.
    [5] [4]JIA Yong-tao, LIU Ying, GUO Y. Jay, et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 179-188.
    [6] [5]LIU Ying, LI Kun, JIA Yong-tao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326-331.
    [7] [6]ZHANG Pan-pan, ZHAO Yan, Zhu Xi-cheng, et al. A single-layer vialess polarization rotation reflective surface with high-frequency selectivity[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(5): 1089-1093.
    [8] [7]ZHANG Zong-tang, LUYEN H, BOOSKE J H, et al. A dual-band, polarization-rotating reflectarray with independent phase control at each band [J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5546-5558.
    [9] [8]CERVENY M, FORD K L, TENNANT A. Reflection switchable polarization rotator based on metasurface with PIN diodes [J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1483-1492.
    [10] [9]CAO Yue, CHE Wen-quan, YANG Wan-chen, et al. Novel wideband polarization rotating metasurface element and its application for wideband folded reflectarray [J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2118-127.
    [11] [10]ZAKER R and SADEGHZADEH A. A low-profile design of polarization rotation reflective surface for wideband RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1794-1798.
    [12] [11]DENG Zhou-hu, WANG Fu-wei, REN Yu-hui, et al. A novel wideband low-RCS reflector by hexagon polarization rotation surfaces [J]. IEEE Access, 2019, 7: 131527-131533.
    [13] [12]JIA Yong-tao, LIU Ying, GUO Y. Jay, et al. A dual-patch polarization rotation reflection surface and its application to ultra-wideband RCS reduction [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3291-295.
    [14] [13]HUANG Yong-jun, YANG Li, LI Jian, et al. Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna [J]. Applied Physics Letters, 2016, 109(5): 054101-05.
    [15] [14]YANG Wan-chen, TAM K W, CHOI W W, et al. Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna [J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6206–6216.
    [16] [15]ZHU Xi-cheng, HONG Wei, WU Ke, et al. A novel reflective surface with polarization rotation characteristic[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 968-971.
    [17] [16]SHI Su-yang, LU Qing, FENG Wen-jie, et al. Wideband polarization rotation transmitarray using arrow-shaped FSS at W-band[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 6001-6005.
    [18] [17]LI Tang-jing, WANG Guang-ming, CAI Tong, et al. Broadband folded transmitarray antenna with ultralow-profile based on metasurfaces [J]. IEEE Transactions on Antennas and Propagation, 2021, 69(10): 7017-7022.
    [19] [18]OMAR A A, MAHMOUD A, CHOI J, et al. Wideband transmission polarization rotator with in-band notches enabling multiband operation [J]. IEEE Access, 2021, 9: 44751-44756.
    [20] [19]FENG Peng-yu, QU Shi-wei, YANG Shi-wen. Ultrawideband low-profile transmitarray with Vivaldi array feed [J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3265-3270.
    [21] [20]GE Yue-he, LIN Cheng-xiu, LIU yu-jie. Broadband folded transmitarray antenna based on an ultrathin transmission polarizer [J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 5974-5981.
    [22] [21]FENG Peng-yu, QU Shi-wei, YANG Shi-wen. Octave bandwidth transmitarrays with a flat gain [J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5231-5238.
    [23] [22]GAO Xi, HAN Xu, CAO Wei-ping, et al.Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3522-3530.
    [24] [23]WINKLER S A, HONG W, BOZZI M, et al. Polarization rotating frequency selective surface based on substrate integrated waveguide technology [J]. IEEE Transactions on Antennas and Propagation, 2010, 58(4): 1202–1213.
    [25] [24]ARNIERI E. A SIW-based polarization rotator with an application to linear-to-circular dual-Band polarizers at K-/Ka-Band [J]. IEEE Transactions on Antennas and Propagation, 2020, 68(5): 3730–3738.
    [26] [25]WU Ke. Multi-dimensional and multi-functional substrate integrated waveguide antennas and arrays for GHz and THz applications: An emerging disruptive technology [C]// 7th European Conference on Antennas and Propagation. 2013: 11-15.
    [27] [26]ZHU Xi-cheng, ZHANG Pan-pan, ZHANG Yong-xin, et al. A high-gain filtering antenna based on folded reflectarray antenna and polarization-sensitive frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19: 1462–1465.
    [28] [27]MEI Peng, ZHANG Shuai, CAI Yang, et al. A reflectarray antenna designed with gain filtering and low RCS properties[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(8): 5362–5371.
    [29] [28]MARTINEZ R A J, TORNERO J L G, GOUSSETIS G. Multifunctional angular bandpass filter SIW leaky wave antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 936–939.
    [30] [29]XU He-xiu, TANG Shi-wei, WANG Guang-ming, et al. Multifunctional microstrip array combing a linear polarizer and focusing metasurface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3676–3682.
    [31] [30]Pan Y M, Hu P F, Zhang X Y, et al. A low-profile high-gain and wideband filtering antenna with metasurface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 2010–2016.
    [32] [31]SAIKIA M, GHOSH S, SRIVASTAVA K V. Design and analysis of ultrathin polarization rotating frequency selective surface using V-shaped slots [J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1822-1826.
    [33] [32]LIN Bao-qin, HUANG Wen-zhun, LV Lin-tao, et al. Second-order polarization rotating frequency-selective surface [J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7976-7981.
    [34] [33]XIE Jin-ming, LI Bo, ZHU Lei. High-order bandpass polarization rotator based on aperture-coupled patch resonators[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(9): 1809-1813.
    [35] [34]ZHU Xi-cheng, HONG Wei, WU Ke, et al. Design of a bandwidth-enhanced polarization rotating frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 940–944.
    [36] [35]M. Ohira and Z. Ma, “A parameter-extraction method for microwave transversal resonator array bandpass filters with direct source/load coupling,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1801–1811, May 2013.
    [37] [36]Wang Shen-yun, Bi Jie-dong, Wen Ge-yi, Gao Steven. Polarization-insensitive cross-polarization converter [J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4670–4680.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱熙铖,葛莹,张盼盼,涂刚毅,葛俊祥.具有高选频特性和高角度稳定性的无通孔透射式极化扭转超表面[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:2
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-02
  • 最后修改日期:2025-03-18
  • 录用日期:2025-03-19

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司