基于健康因子和Attention-GRU的锂电池剩余使用寿命预测
DOI:
作者:
作者单位:

哈尔滨商业大学轻工学院

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:

黑龙江省省属高等学校基本科研业务项目(2023-KYYWF-1013).


Prediction of remaining service life of lithium battery based on health factors and Attention-GRU
Author:
Affiliation:

1.Harbin University of Commerce,College of Light Industry,Harbin,150028;2.China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要: 为了提高神经网络模型预测锂离子电池剩余使用寿命的准确性,本文提出一种基于Attention(注意力机制)-GRU(门控循环单元)模型的预测方法。首先,以美国NASA公开的Random Walk电池数据为基础,在电池电压、电流和时间等直接测量数据中提取与电池容量衰减相关性显著的健康因子,计算健康因子与电池容量之间的相关性;其次,构建Attention-GRU模型学习健康因子变化规律,依据相关性分配注意力权重,得到注意力向量,调整隐藏层输出;最后,对电池剩余使用寿命进行预测,并增加B05系列电池寿命预测探究模型泛化能力。实验结果表明:使用Attention-GRU模型对Random Walk电池预测时,MAE和RMSE在0.015左右,对B05系列电池预测时,MAE和RMSE在0.01以下,预测精度均优于对比方法,具有较高的准确度和良好的泛化能力。

    Abstract:

    Abstract: To enhance the accuracy of neural network models in predicting the remaining useful life of lithium-ion batteries, this paper proposed a prediction method based on the Attention-GRU (Gated Recurrent Unit) model. Firstly, based on the Random Walk battery data publicly available from NASA, health factors that significantly correlated with battery capacity decay were extracted from direct measurement data such as battery voltage, current, and time, and the correlation between these health factors and battery capacity was calculated. Secondly, an Attention-GRU model was constructed to learn the patterns of change in health factors, allocate attention weights based on correlation, obtain attention vectors, and adjust the output of the hidden layer. Finally, predictions for the remaining useful life of the battery were made, and predictions for the B05 series of batteries were added to explore the model's generalization capabilities. Experimental results indicated that when using the Attention-GRU model to predict the Random Walk batteries, the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) were around 0.015, and for the B05 series batteries, the MAE and RMSE were below 0.01. The prediction accuracy was superior to comparative methods, demonstrating high precision and good generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

林晶,张学明,董静,高煜琨.基于健康因子和Attention-GRU的锂电池剩余使用寿命预测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-01
  • 最后修改日期:2024-10-30
  • 录用日期:2024-11-04
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司