基于混合注意力机制的茶芽检测
DOI:
作者:
作者单位:

1.福建农林大学 计算机与信息学院;2.武夷学院 数学与计算机学院

作者简介:

通讯作者:

中图分类号:

基金项目:

福建自然科学(2021J011207);福建农林大学科技创新专项(KFb22092XA、KFb23158);福建省茶产业大数据应用于智能化重点实验室开放(FKLBDAITI202309)


Tea Bud Detection Based on Hybrid Attention Mechanism
Author:
Affiliation:

1.College of Computer and Information Sciences Fujian Agriculture and Forestry University;2.School 3.of 4.Mathematics 5.and 6.Computer 7.Science Wuyi 8.University, 9.Wuyishan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确识别茶芽图像需要克服茶芽颜色与背景相似且目标尺寸小的问题,为此提出一种应用于茶芽检测的基于混合注意力机制的YOLOv5s模型。首先,提出一种混合注意力机制(HAM)并将其加入到YOLOv5s主干网络中,使网络能够专注于目标区域,更加充分地提取特征,提高模型识别物体的准确性。然后,引入归一化瓦瑟斯坦距离(NWD)作为新的度量指标,并与原有的CIoU损失函数相结合。NWD损失函数通过边界框对应的高斯分布来计算它们之间的相似性,从而提高模型对图像中小目标的检测精度。实验结果表明,与原YOLOv5s模型相比,改进后模型的mAP0.5提高0.9%,mAP0.5:0.95提高1.3%,而参数量仅仅增加0.044×106。这些结果验证了本文所提出的方法在茶芽检测方面的有效性。

    Abstract:

    Accurately detecting tea buds is the key to achieving automation and intelligence in tea bud harvesting. However, to accurately identify tea bud images, it is necessary to overcome the problem of tea bud colors being similar to the background and the target size being too small. Therefore, this article studies a YOLOv5s model based on hybrid attention mechanism and applies it to tea bud detection. This article makes optimizations in the following two aspects: firstly, a hybrid attention mechanism (HAM) is proposed and added to the YOLOv5s backbone network, which enables the network to focus on the target area, extract features more fully, and improve the accuracy of object recognition by the model. Secondly, by introducing normalized Wasserstein distance (NWD) as a new metric and combining it with the existing CIoU loss function. The NWD loss function calculates the similarity between the bounding boxes based on their corresponding Gaussian distributions, thereby improving the model's accuracy in detecting small targets in images. The experimental results show that compared with the original YOLOv5s model, the improved model mAP0.5 increased by 0.9%, mAP0.5:0.95 increased by 1.3%, while the number of parameters only increased by 0.044×106. These results confirm the effectiveness of the proposed method in achieving precise tea picking recognition, providing technical reference for intelligent tea picking in practical scenarios.

    参考文献
    相似文献
    引证文献
引用本文

王洲,周旗,王李进,吴清寿.基于混合注意力机制的茶芽检测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-29
  • 最后修改日期:2024-09-21
  • 录用日期:2024-09-23
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司