基于三种群协同进化算法的柔性作业车间调度
DOI:
作者:
作者单位:

南京信息工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (61502239);江苏省自然科学基金(BK20150924)


Flexible job-shop scheduling based on three population co-evolutionary algorithm
Author:
Affiliation:

School of Automation,Nanjing University of Information Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    建立柔性作业车间调度问题的数学模型,在满足加工顺序和加工时间等约束下,最小化所有工件的最大完工时间。提出一种三种群协同进化算法求解该模型。基于三元锦标赛法将种群分为优等、中等和劣等子种群,依据不同子种群的个体特征设计相应的搜索策略。优等子种群利用负载平衡和关键路径的变邻域下降局部搜索提高求解精度,挖掘更优解。中等子种群使用自适应Jaya操作,进化前期趋优避劣,中后期则注重对种群多样性的维护。劣等子种群采取多元交叉全局搜索,对不同基因串设计能够产生可行个体的交叉算子,同时将其余子种群中的个体作为交叉对象,以强化子种群间的协同交互。在标准测试算例和生产实例中的大量实验结果表明,所提算法在绝大多数情况下的求解性能显著优于代表性算法。

    Abstract:

    The mathematical model of flexible job-shop scheduling problem is established to minimize the maximum completion time of all workpieces under the constraints of processing sequence and processing time. A three population co-evolution algorithm was proposed to solve the model. Based on the three-way tournament method, the population was divided into superior, medium and inferior subpopulations, and the corresponding search strategy was designed according to the individual characteristics of different subpopulations. The superior subpopulation uses load balance and variable neighborhood descent local search of critical path to improve the solution accuracy and excavate better solutions. In the medium subpopulation, adaptive Jaya operation was used to avoid the bad in the early stage of evolution, and the maintenance of population diversity was emphasized in the middle and late stages. Multiple cross global search was adopted for inferior subpopulation, and the crossover operators that could generate viable individuals were designed for different gene strings. At the same time, individuals in other subpopulations were taken as crossover objects to strengthen the cooperative interaction among subpopulations. A large number of experimental results in standard test examples and production instances show that the proposed algorithm has significantly better performance than the representative algorithm in most cases.

    参考文献
    相似文献
    引证文献
引用本文

张雨驰,申晓宁,陈文言,陈星晖.基于三种群协同进化算法的柔性作业车间调度[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-15
  • 最后修改日期:2024-08-24
  • 录用日期:2024-08-24
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司