数据-知识融合驱动的电网调度自适应巡航方法研究
DOI:
作者:
作者单位:

1.国家电网有限公司西南分部;2.南京南瑞信息通信科技有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家电网有限公司西南分部科技项目资助(合同号:SGSW0000DKJS2310034)


Research on Adaptive Cruising Method for Power System Dispatch via Data-Knowledge Integration
Author:
Affiliation:

1.Southwest Branch of State Grid Corporation of China;2.Nanjing NARI Information and Communication Technology Co,Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着可再生能源的大规模接入和电力需求的持续增长,电网运行环境变得日益复变。这种变化带来了许多不确定性,使得传统基于模型或单纯依靠数据驱动的电网调度方法难以准确和可靠地制定调度计划。为应对这一挑战,本文提出了一种数据-知识融合的电网调度自适应巡航方法。首先,构建电网调度自适应巡航问题的数学模型,并基于该模型构建深度强化学习训练框架。进一步,本文提出改进的近端策略优化算法用于调度智能体的离线训练,通过融合调度规程相关的专业知识,所提算法可以引导智能体趋优学习。最后,通过对仿真算例的深入分析,验证了所提方法的有效性和优越性。

    Abstract:

    With the large-scale integration of renewable energy sources and the continuous growth in electricity demand, the operating environment of power grids has become increasingly complex and variable. This change has introduced numerous uncertainties, making it difficult for traditional model-based or purely data-driven grid scheduling methods to formulate accurate and reliable scheduling plans. To address this challenge, this paper proposes an adaptive cruising method for grid scheduling that integrates data and knowledge. Firstly, a mathematical model for the adaptive cruising problem in power system dispatch is constructed, and a deep reinforcement learning training framework is built based on this model. Furthermore, this article proposes an improved proximal policy optimization algorithm for offline training of dispatch agent. By integrating professional knowledge related to scheduling regulations, the proposed algorithm can guide agents to learn towards optimization. Finally, an in-depth analysis of simulation examples validates the effectiveness and superiority of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

杜继成,高 鹏,匡仲琴,梁 涛,代涛涛,葛艺晓.数据-知识融合驱动的电网调度自适应巡航方法研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-15
  • 最后修改日期:2024-09-12
  • 录用日期:2024-09-12
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司