数据-知识融合驱动的电网调度自适应巡航方法研究
作者:
作者单位:

1.国家电网有限公司西南分部;2.南京南瑞信息通信科技有限公司

基金项目:

国家电网有限公司西南分部科技项目资助(合同号:SGSW0000DKJS2310034)


Research on Adaptive Cruising Method for Power System Dispatch via Data-Knowledge Integration
Author:
Affiliation:

1.Southwest Branch of State Grid Corporation of China;2.Nanjing NARI Information and Communication Technology Co,Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着可再生能源的大规模接入和电力需求的持续增长,电网运行环境变得日益复变。这种变化带来了许多不确定性,使得传统基于模型或单纯依靠数据驱动的电网调度方法难以准确和可靠地制定调度计划。为应对这一挑战,本文提出了一种数据-知识融合的电网调度自适应巡航方法。首先,构建电网调度自适应巡航问题的数学模型,并基于该模型构建深度强化学习训练框架。进一步,本文提出改进的近端策略优化算法用于调度智能体的离线训练,通过融合调度规程相关的专业知识,所提算法可以引导智能体趋优学习。最后,通过对仿真算例的深入分析,验证了所提方法的有效性和优越性。

    Abstract:

    With the large-scale integration of renewable energy sources and the continuous growth in electricity demand, the operating environment of power grids has become increasingly complex and variable. This change has introduced numerous uncertainties, making it difficult for traditional model-based or purely data-driven grid scheduling methods to formulate accurate and reliable scheduling plans. To address this challenge, this paper proposes an adaptive cruising method for grid scheduling that integrates data and knowledge. Firstly, a mathematical model for the adaptive cruising problem in power system dispatch is constructed, and a deep reinforcement learning training framework is built based on this model. Furthermore, this article proposes an improved proximal policy optimization algorithm for offline training of dispatch agent. By integrating professional knowledge related to scheduling regulations, the proposed algorithm can guide agents to learn towards optimization. Finally, an in-depth analysis of simulation examples validates the effectiveness and superiority of the proposed method.

    参考文献
    [1] 康重庆,杜尔顺,郭鸿业,等. 新型电力系统的六要素分析[J]. 电网技术,2023,47(05):1741-1750.KANG Chongqing, DU Ershun, GUO Hongye, et al. Primary exploration of six essential factors in new power system[J]. Power System Technology,2023,47(05):1741-1750.
    [2] 杨胜春, 吕建虎, 郭晓蕊, 等. 适应新型电力系统发展的多元灵活资源优化调度建模和分析[J/OL]. 电网技术: 1-14. https://doi.org/10.13335/j.1000-3673.pst.2024.0507.YANG Shengchun, LV Jianhu, GUO Xiaorui, et al. Modeling and analysis of multi flexible resource optimization scheduling for adapting to the development of new power systems[J/OL]. Power System Technology, 2023: 1-14. https://doi.org/10.13335/j. 1000-3673.pst.2024.0507.
    [3] 王珍意, 高道春, 莫熙, 等. 基于图数据库和图计算的源网荷储协同日内调度计算方法[J/OL]. 南京信息工程大学学报: 1-10. https://doi.org/10.13878/j.cnki.jnuist.20240311003.WANG Zhenyi, GAO Daochun, Mo Xi, et al. The intra-day scheduling computational method of source-network-load-storage coordination based on graph database and qraph computation [J/OL]. Journal of Nanjing University of Information Science and Technology: 1-10. https://doi.org/10.13878/j.cnki.jnuist.20240311003.
    [4] 王新迎, 闫冬, 施展, 等. 机器学习赋能的优化算法及其在新型电力系统中的应用与展望[J/OL]. 中国电机工程学报: 1-22. .http://kns.cnki.net/kcms/detail/11.2107.tm.20240307.1050.004.html.WANG Xinying, YAN Dong, SHl Zhan, et al. Machine learning empowered optimization algorithms and their applications and prospects in new type power system[J/OL]. Proceedings of the CSEE: 1-22. .http://kns.cnki.net/kcms/detail/11.2107.tm.2024 0307.1050.004.html.
    [5] 许泽凯, 和敬涵, 刘曌, 等. 基于耦合约束解耦的虚拟电厂动态可行域求解方法[J]. 中国电机工程学报, 2024, 44(9): 3440-3452.XU Zekai, HE Jinghan, LlU Zhao, et al. Solution Method of Virtual Power Plant Dynamic Feasible Region Based on Decoupling of Coupling Constraints[J]. Proceedings of the CSEE, 2024, 44: 3440-3452.
    [6] Van Arem B, Van Driel C J G, Visser R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 429-436.
    [7] 赵晋泉, 张逸康, 苏大威, 等. 交直流大电网调度自动巡航架构及关键技术[J]. 电力系统自动化, 2019, 43: 187-193+216.ZHAO JinquanZHANG Yikang SU Dawei, et al. Architecture and key technologies of automatic cruise for AC/DC bulk power grid dispatching[J]. Automation of Electric Power Systems, 2019, 43: 187-193+216.
    [8] 姚建国, 王珂, 许丹, 等. 大电网调度稳态自适应巡航场景架构[J]. 电力系统自动化, 2019, 43: 179-186.YAO Jianguo, WANG Ke, XU Dan, et al. Architecture of steady-state adaptive cruise scenario for large-scale power grid dispatching[J]. Automation of Electric Power Systems, 2019, 43: 179-186.
    [9] 张逸康, 赵晋泉, 刘子文, 等. 大电网调度自动巡航中经济运行域的构建方法[J]. 电力系统自动化, 2020, 44: 64-73.ZHANG Yikang, ZHAO Jinquan, LlU Ziwen et al. Construction Method of Economic Operation Region in Automatic Cruise for Bulk Power Grid Dispatching[J]. Automation of Electric Power Systems, 2020, 44: 64-73.
    [10] 蔺伟山, 王小君, 孙庆凯, 等. 不确定性环境下基于深度强化学习的综合能源系统动态调度[J]. 电力系统保护与控制, 2022, 50: 50-60.LIN Weishan, WANG Xiaojun, SUN Qingkai, et al. Dynamic dispatch of an integrated energy system based on deep reinforcement learning in an uncertain environment[J]. Power System Protection and Control, 2022, 50: 50-60.
    [11] 王小君, 窦嘉铭, 刘曌, 等. 可解释人工智能在电力系统中的应用综述与展望[J]. 电力系统自动化, 2024, 48: 169-191.WANG Xiaojun, DOU Jiaming, LlU Zhao, et al. Review and prospect of explainable artificial intelligence and its application in power systems[J]. Automation of Electric Power Systems, 2024, 48: 169-191.
    [12] 王珂, 姚建国, 余佩遥, 等. 基于深度强化学习的电网前瞻调度智能决策架构及关键技术初探[J]. 中国电机工程学报, 2022, 42: 5430-5439.WANG Ke, YAO Jianguo, YU Peiyao, et al. Architecture and key technologies of intelligent decision-making of power grid look-ahead dispatch based on deep reinforcement learning[J]. Proceedings of the CSEE, 2022, 42: 5430-5439.
    [13] WANG Xinyue, ZHONG Haiwang, ZHANG Guanglun, et al. Adaptive look-ahead economic dispatch based on deep reinforcement learning[J]. Applied Energy, 2024, 353: 122121.
    [14] YAN Jiahao, LI Yaping, YAO Jianguo, et al. Look-ahead unit commitment with adaptive horizon based on deep reinforcement learning[J]. IEEE Transactions on Power Systems, 2023, 39(2): 3673-3684.
    [15] 李峰, 王琦, 胡健雄, 等. 数据与知识联合驱动方法研究进展及其在电力系统中应用展望[J]. 中国电机工程学报, 2021, 41(13): 4377-4390.LI Feng, WANG Qi, HU Jianxiong, et al. Combined data-driven and knowledge-driven methodology research advances and its applied prospect in power systems[J]. Proceedings of the CSEE, 2021, 41(13): 4377-4390.
    [16] 李鹏, 黄文琦, 王鑫, 等. 数据与知识联合驱动的人工智能方法在电力调度中的应用综述[J]. 电力系统自动化, 2024, 48: 160-175.LI Peng, HUANG Wengi, WANG Xin, et al. Review on application of combined data-knowledge-driven artificial intelligence methods in power dispatching[J]. Automation of Electric Power Systems, 2024, 48: 160-175.
    [17] 姚建国, 余涛, 杨胜春, 等. 提升电网调度中人工智能可用性的混合增强智能知识演化技术[J]. 电力系统自动化, 2022, 46: 1-12.YAO Jianguo, Yu Tao, YANG Shengchun, et al. Knowledge evolution technology based on hybrid-augmented intelligence for improving practicability of artificial intelligence in power grid dispatch[J]. Automation of Electric Power Systems, 2022, 46: 1-12.
    [18] 成梁成, 严嘉豪, 姚建国, 等. 面向电网前瞻调度嵌入领域知识的深度强化学习方法[J/OL]. 电网技术: 1-9. https://doi.org/10.13335/j.1000-3673.pst.2023.1751.CHENG Liangcheng, YAN Jiahao, YAO Jianguo, et al. Look-ahead dispatch method via deep reinforcement learning dmbedded with domain knowledge[J/OL]. Power System Technology: 1-9. https://doi.org/10.13335/j.1000-3673.pst.2023.1751.
    [19] 郭庆来, 兰健, 周艳真, 等. 基于混合智能的新型电力系统运行方式分析决策架构及其关键技术[J]. 中国电力, 2023, 56: 1-13.GUO Qinglai, LAN Jian, ZHOU Yanzhen, et al. Architecture and key technologies of hybrid-intelligence-based decision-making of operation modes for new type power systems[J]. Electric Power, 2023, 56: 1-13.
    [20] 余佩遥. 基于深度强化学习的电网前瞻调度优化方法[D]. 合肥工业大学, 2022.YU Peiyao. Look-Ahead Dispatch Optimization of Power System Based on Deep Reinforcement Learning[D]. Hefei University of Technology, 2022.
    [21] ZHANG Yuxian, HAN Yi, LIU Deyang, et al. Low-carbon economic dispatch of electricity-heat-gas integrated energy systems based on deep reinforcement learning[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11(6): 1827-1841.
    [22] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.
    [23] Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms[C]. in Proceedings of the 31st International Conference on Machine Learning, Beijing, China, Jun. 2014, pp: 387–395.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜继成,高 鹏,匡仲琴,梁 涛,代涛涛,葛艺晓.数据-知识融合驱动的电网调度自适应巡航方法研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:15
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-15
  • 最后修改日期:2024-09-12
  • 录用日期:2024-09-12

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司