基于坐标注意力机制的轻量级安全帽佩戴检测
DOI:
作者:
作者单位:

沈阳理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省教育厅基本科研重点攻关项目(JYTZD2023006)


Lightweight safety helmet wearing detection based on coordinate attention
Author:
Affiliation:

Shenyang Ligong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在安全帽佩戴检测中,存在着目标密集、遮挡等问题,现有的检测方法在精度和实时性方面表现不佳。针对此问题,提出了一种轻量级的检测模型CA-YOLO,旨在提升检测的准确性与实时性。首先,使用MobileNetv3网络对YOLOv8的主干网络进行改进,减少参数量和计算量,提升网络的检测速度。在Neck部分引入DCNv3模块来提升模型在空间特征上的提取效率。其次,在网络中加入多尺度特征提取模块和坐标注意力机制模块,通过添加全局信息,丰富特征信息,提升网络特征提取效果。最后,将CIOU损失替换为Alpha-IOU函数,通过设定权重系数,加速了对目标的学习过程,进一步提高检测的精度。实验结果表明,与YOLOv8模型和现有的经典及新颖算法相比,CA-YOLO模型的平均检测精度达91.33%,比YOLOv8模型提高0.54%,模型大小和参数量分别减少41%和39%,检测速度提高16.9%。相较于其他模型,CA-YOLO模型在准确率和实时性方面取得了良好的平衡,满足了对作业人员安全帽佩戴检测的需求。

    Abstract:

    In safety helmet wear detection, there are problems such as dense targets and occlusion, and existing detection methods perform poorly in terms of accuracy and real-time performance. Existing detection methods often have limitations in terms of both accuracy and real-time performance. To tackle these problems, a lightweight detection model named CA-YOLO is proposed, which is designed to improve the accuracy and real-time performance of detection. Firstly, the backbone network of YOLOv8 is improved using MobileNetv3 network to reduce the number of parameters and computation to improve the detection speed of the network. The DCNv3 module is introduced in the Neck part to improve the extraction efficiency of the model on spatial features. Secondly, a multi-scale feature extraction module and the coordinate attention mechanism module are added to the YOLOv8 network to effectively add global information to enrich feature information to improve the network feature extraction effect. Finally, the CIOU loss is replaced with the Alpha-IOU function, which accelerates the learning process of the target by setting the weight coefficients to further improve the detection accuracy. Experimental results show that compared to the YOLOv8 model and existing classic and novel algorithms, the CA-YOLO model achieves an average detection accuracy of 91.33%, an improvement of 0.54% over the YOLOv8 model. Additionally, The model size and the number of parameters are reduced by 41% and 39%, and the detection speed is increased by 16.9%. Compared to other models, the CA-YOLO model achieves a good balance between accuracy and real-time performance, satisfying the requirements for detecting coal miners" safety helmet wearing.

    参考文献
    相似文献
    引证文献
引用本文

盖勇刚.基于坐标注意力机制的轻量级安全帽佩戴检测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-19
  • 最后修改日期:2024-08-04
  • 录用日期:2024-08-09
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司