基于改进多目标粒子群算法的储能式充电桩优化运行策略
作者:
中图分类号:

TM724

基金项目:

江苏省重点研发计划社会发展项目(BE2015692)


Optimized operation strategy for energy storage charging piles based on improved multi-objective particle swarm optimization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对小区接入充电桩无序充放电加大负荷峰谷差率和用户成本的问题,提出一种储能式充电桩有序充放电优化运行策略.该优化策略在降低峰谷差率的前提下,以用户充电成本最低和充电桩收益最高为优化目标.选取典型日建立储能充电桩优化充放电调度模型,采用改进多目标粒子群优化算法进行求解,结合分时电价调整储能式充电桩的充放电功率和时间.通过优化惯性权重和学习因子并自适应改变位置分裂因子来改进多目标粒子群优化算法.实验结果表明:该算法可有效提高收敛速度,避免陷入局部最优,能更好地处理多目标问题,在求解储能调度模型中降低了典型负荷峰谷差率55%,比原有算法优化了36%,能合理分配充电桩在谷时段储存电力资源,降低用户充电费用20%~30%,提高充电桩收益,达到电网、用户和充电桩三方共赢的目的.

    Abstract:

    To address the increased load peak-to-trough ratio and user costs caused by disorderly charging and discharging of electric vehicle charging piles in residential communities,an optimized operation strategy is proposed for energy storage charging piles to achieve orderly charging and discharging.While reducing the peak-to-trough ratio,the strategy aims to minimize users' charging costs and maximize charging pile profits.A typical day is selected to establish an optimized charging and discharging scheduling model for the energy storage charging piles,which is solved by an Improved Multi-Objective Particle Swarm Optimization (IMOPSO) algorithm,and the charging and discharging power and time of the energy storage charging pile is adjusted in combination with the time-of-use electricity price.The MOPSO algorithm is improved by optimizing the inertial weights,learning factors and adaptively changing the position splitting factor.Experimental data results show that the algorithm can effectively improve the convergence speed,avoid falling into local optimum,and better handle multi-objective problem.In the energy storage scheduling model,it reduces the typical load peak-to-trough ratio by 55%,optimized by 36% compared to the original algorithm,rationally allocates charging piles to store power resources during low-demand period,effectively reduces charging costs by 20% to 30%,and improves charging pile profits,thus achieving a win-win situation for the power grid,users and charging piles.

    参考文献
    [1] 吕金炳,宋辉,刘云,等.电动汽车充电对配电网电压质量的影响研究[J].电测与仪表,2018,55(22):33-40 LYU Jinbing,SONG Hui,LIU Yun,et al.Study on the impact of electric vehicle charging on voltage quality of distribution network[J].Electrical Measurement & Instrumentation,2018,55(22):33-40
    [2] Zhu L J,Wang P Z.Study on indirect network effects on the construction of electric vehicle charging piles based on game theory analysis[J].Energy Procedia,2019,158:3853-3858
    [3] 高驰.2021电动汽车百人会:聚焦新能源发展格局与产业变革[J].汽车与配件,2021(3):48-51
    [4] 徐英俊,丁少恒,罗艳托.中国新能源汽车发展及其对汽油需求影响的长期趋势预测[J].国际石油经济,2022,30(8):32-40 XU Yingjun,DING Shaoheng,LUO Yantuo.The development of new energy vehicles in China and the long-term trend forecast of the impact on gasoline demand[J].International Petroleum Economics,2022,30(8):32-40
    [5] 冯仕杰,刘韬,潘萨,等.基于分层优化的电动汽车有序充电策略[J].电气工程学报,2021,16(3):137-144 FENG Shijie,LIU Tao,PAN Sa,et al.Coordinated charging strategy for electric vehicles based on hierarchical optimization[J].Journal of Electrical Engineering,2021,16(3):137-144
    [6] Kapustin N O,Grushevenko D A.Long-term electric vehicles outlook and their potential impact on electric grid[J].Energy Policy,2020,137:111103
    [7] Hu L X,Yue F Y.Research on intelligent peak-cutting and valley-filling charging and swapping mode based on potential game theory[J].Journal of Physics:Conference Series,2022,2189(1):012013
    [8] Ul-Haq A,Cecati C,Strunz K,et al.Impact of electric vehicle charging on voltage unbalance in an urban distribution network[J].Intelligent Industrial Systems,2015,1(1):51-60
    [9] 全慧,李相俊,贾学翠,等.提高快充电站与配电网互动能力的储能系统模型及控制策略[J].电力系统自动化,2022,46(19):23-30 QUAN Hui,LI Xiangjun,JIA Xuecui,et al.Model and control strategy of energy storage system for improving interaction capability between fast charging station and distribution network[J].Automation of Electric Power Systems,2022,46(19):23-30
    [10] Liao Y T,Lu C N.Dispatch of EV charging station energy resources for sustainable mobility[J].IEEE Transactions on Transportation Electrification,2015,1(1):86-93
    [11] 朱心月,岳云涛,李炳华,等.电动汽车有序充放电分群调度策略[J].科学技术与工程,2021,21(19):8023-8030 ZHU Xinyue,YUE Yuntao,LI Binghua,et al.Orderly charging and discharging group scheduling strategy for electric vehicles[J].Science Technology and Engineering,2021,21(19):8023-8030
    [12] 王杰,唐菁敏,刘思淼.基于用户响应度的电动汽车有序充放电策略[J].电子测量技术,2021,44(1):31-36 WANG Jie,TANG Jingmin,LIU Simiao.Orderly charging and discharging strategy of electric vehicles based on user responsiveness[J].Electronic Measurement Technology,2021,44(1):31-36
    [13] 曾鸣,杨雍琦,向红伟,等.兼容需求侧资源的"源-网-荷-储"协调优化调度模型[J].电力自动化设备,2016,36(2):102-111 ZENG Ming,YANG Yongqi,XIANG Hongwei,et al.Optimal dispatch model based on coordination between "generation-grid-load-energy storage" and demand-side resource[J].Electric Power Automation Equipment,2016,36(2):102-111
    [14] 杨锡运,董德华,李相俊,等.商业园区储能系统削峰填谷的有功功率协调控制策略[J].电网技术,2018,42(8):2551-2561 YANG Xiyun,DONG Dehua,LI Xiangjun,et al.Active power coordinated control strategy of peak load shifting for energy storage system in business park[J].Power System Technology,2018,42(8):2551-2561
    [15] 于文山,黎明,由蕤.含储能的三端SOP对主动配电网的潮流优化研究[J].太阳能学报,2022,43(3):101-110 YU Wenshan,LI Ming,YOU Rui.Power flow optimization study on active distribution network based on three-terminal SOP with energy storage system[J].Acta Energiae Solaris Sinica,2022,43(3):101-110
    引证文献
引用本文

李鹏,俞天杨,俞斌,周成伟,孟伟.基于改进多目标粒子群算法的储能式充电桩优化运行策略[J].南京信息工程大学学报(自然科学版),2024,16(6):817-826
LI Peng, YU Tianyang, YU Bin, ZHOU Chengwei, MENG Wei. Optimized operation strategy for energy storage charging piles based on improved multi-objective particle swarm optimization[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(6):817-826

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-27
  • 在线发布日期: 2025-01-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司