基于TrellisNet和注意力机制的电力设备故障检测模型
作者:
中图分类号:

TP183;TM507

基金项目:

南方电网公司信息化重点项目(031900HK42200008);江苏省自然科学基金(BK20171458)


A fault detection model for power equipment based on TrellisNet and attention mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    电力设备故障检测模型的性能受到多种因素的影响,如故障种类的多样性、故障特征的复杂性和图像质量的差异等.为此,本文提出一种基于TrellisNet和注意力机制的新型电力设备故障检测模型.首先,将长短期记忆(Long Short-Term Memory,LSTM)网络和卷积神经网络(Convolutional Neural Network,CNN)进行融合,构建LSTM-CNN来获取图片中的故障特征,以有效区分不同故障类型的特征,并减少噪声和干扰因素的影响.然后,将LSTM-CNN获得的特征数据作为输入,并将注意力机制嵌入到TrellisNet中,构建具有高分辨能力的AT-TrellisNet网络来检测不同电力设备的故障类型.最后,选取5种常见的电力设备故障进行模型验证.实验结果显示,本文模型与一些现有的检测模型相比,检测精确率较高,最高可达90%以上,可满足实际电力设备故障检测需求.

    Abstract:

    The performance of power equipment fault detection models is affected by various factors including fault type,fault complexity,and image quality.Here,a fault detection model based on TrellisNet and attention mechanism is proposed for power equipment.First,Long Short-Term Memory (LSTM) is integrated with Convolutional Neural Network (CNN) to construct LSTM-CNN to obtain fault characteristics in images,which can effectively distinguish features of different fault types and reduce the influence of noise and other interference factors.In addition,the feature data obtained by LSTM-CNN are used as input,and by embedding the attention mechanism into TrellisNet,an AT-TrellisNet network with high resolution is constructed to detect the fault type of different power equipment.Finally,five common power equipment faults are selected for model validation.The experiment results show that compared with some existing detection models,the proposed model has higher detection accuracy,with a maximum of over 90%,which can meet the actual needs of power equipment fault detection.

    参考文献
    相似文献
    引证文献
引用本文

罗金满,叶思琪,王海彬,黎玉青,封祐钧.基于TrellisNet和注意力机制的电力设备故障检测模型[J].南京信息工程大学学报(自然科学版),2024,16(6):810-816
LUO Jinman, YE Siqi, WANG Haibin, LI Yuqing, FENG Youjun. A fault detection model for power equipment based on TrellisNet and attention mechanism[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(6):810-816

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-27
  • 在线发布日期: 2025-01-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司