GQD掺杂的碱剥离g-C3N4复合材料的制备与光催化性能
作者:
作者单位:

1.南京信息工程大学化学与材料学院;2.南京信息工程大学环境科学与工程学院

基金项目:

国家自然科学基金(21501097);中国气象局青年创新团队项目(2023QN018);江苏省自然科学基金(BK20201389);江苏省高校青蓝工程计划(R2018Q03)


Preparation and photocatalytic performance of GQD doped alkali-exfoliated g-C3N4 composite materials
Author:
Affiliation:

1.School of Chemistry and Materials Science,Nanjing University of Information Science Technology;2.School of Environmental Science and Engineering,Nanjing University of Information Science Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    石墨相氮化碳(g-C3N4)作为一种无金属二维纳米材料在光催化领域具有广阔前景。本文通过叔丁醇钠剥离的方法修饰体相g-C3N4得到碱剥离g-C3N4,调节石墨烯量子点(GQD)投加量,制成不同GQD掺杂的碱剥离g-C3N4复合材料。采用XRD、FT-IR、SEM、UV-Vis、PL等表征手段对系列复合材料的形貌、结构、组成成分进行详细分析,并探究其光降解染料亚甲基蓝的性能。结果表明,与体相g-C3N4相比,通过碱剥离能够缩短载流子的传输距离,同时GQD的引入能有效改善电子-空穴对的复合。当GQD掺杂量为5.0%时,对亚甲基蓝的光催化降解效率达90.9%。此外,通过自由基捕获实验确定光降解中活性组分为?O2-和h+,并提出了一种可能的亚甲基蓝光催化机理。

    Abstract:

    Graphitic carbon nitride (g-C3N4), as a metal-free two-dimensional nanomaterial, has a broad prospect for photocatalysis. In this paper, alkali-exfoliated g-C3N4 has been modified by sodium tert-butoxide from bulk g-C3N4, where a family of composite materials has been prepared by tuning the dosage of graphene quantum dot (GQD). Simultaneously, the morphology, structure, and composition of these samples have been fully confirmed by XRD, FT-IR, SEM, UV-Vis, PL, and other characterization methods, as well as the photodegradation of methylene blue. The results indicate that compared with bulk g-C3N4, alkali-exfoliated g-C3N4 can shorten the carrier transport distance, and the introduction of GQD can effectively improve the recombination of electron-hole pairs. When the doping amount of GQD is 5.0%, the photocatalytic degradation efficiency of methylene blue reaches 90.9%. In addition, the active groups of photodegradation have been identified as?O2- and h+ by free radical trapping experiments, and a possible methylene blue light catalytic mechanism is proposed.

    参考文献
    [1] Solayman H M, Hossen M A, Abd Aziz A, et al. Performance evaluation of dye wastewater treatment technologies: A review [J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109610
    [2] Hashmi Z, Bilad M R, Fahrurrozi, et al. Recent Progress in Microalgae-Based Technologies for Industrial Wastewater Treatment [J]. Fermentation-Basel, 2023, 9(3): 311
    [3] Behera M, Nayak J, Banerjee S, et al. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105277
    [4] Cao G L, Wang R P, Ju Y, et al. Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms [J]. Water Research, 2021, 206: 117741
    [5] Samsami S, Mohamadi M, Sarrafzadeh M H, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives [J]. Process Safety and Environmental Protection, 2020, 143: 138-163
    [6] Wang A J, Wang H C, Cheng H Y, et al. Electrochemistry-stimulated environmental bioremediation: Development of applicable modular electrode and system scale-up [J]. Environmental Science and Ecotechnology, 2020, 3:100050
    [7] Kishor R, Purchase D, Saratale G D, et al. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety [J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105012
    [8] 刘帅,李学雷,王烁天,等.碳量子点修饰石墨相氮化碳光催化降解罗丹明B的研究[J].中国环境科学,2020,40(07):2909-2916LIU Shuai, LI Xuelei, WANG Shuotian, et al. A study on the photocatalytic degradation of Rhodamine B by carbon quantum dot modified graphite nitride carbon [J]. Chinese Environmental Science, 2020,40 (07): 2909-2916
    [9] Zhang J S, Wang B, Wang X C. Chemical Synthesis and Applications of Graphitic Carbon Nitride [J]. Acta Physico-Chimica Sinica, 2013, 29(9): 1865-1876
    [10] Cao S, Low J, Yu J, et al. Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J]. Advanced Materials, 2015, 27(13): 2150-2176
    [11] Wu H, Zhang W, Zhang H, et al. Preparation of the novel g-C3N4 and porous polyimide supported hydrotalcite-like compounds materials for water organic contaminants removal [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607: 125517
    [12] Zhao Z, Ma Y, Fan J, et al. Synthesis of graphitic carbon nitride from different precursors by fractional thermal polymerization method and their visible light induced photocatalytic activities [J]. Journal of Alloys and Compounds, 2018, 735: 1297-1305
    [13] Monga D, Basu S. Enhanced photocatalytic degradation of industrial dye by g-C3N4/TiO2 nanocomposite: Role of shape of TiO2 [J]. Advanced Powder Technology, 2019, 30(5): 1089-1098
    [14] Kumru B, Antonietti M, Schmidt B V K J. Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media via a One-Pot Grafting Approach [J]. Langmuir, 2017, 33(38): 9897-9906
    [15] Dai C L, Feng Z H, Hu Q M, et al. Recent progress in modification and composite strategies of graphitic carbon nitride as catalysts for heterogeneous photo-Fenton reaction [J]. Materials Science in Semiconductor Processing, 2023, 167: 107807
    [16] Balakrishnan A, Chinthala M. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants [J]. Chemosphere, 2022, 297: 134190
    [17] Zhu H, Li M, Zou L, et al. A study on singlet oxygen generation for tetracycline degradation via modulating the size of α-Fe2O3 nanoparticle anchored on g-C3N4 nanotube photocatalyst [J]. Nano Research, 2022, 16(2): 2236-2244
    [18] Rao V N, Kwon H, Lee Y H, et al. Synergistic integration of MXene nanosheets with CdS@TiO2 core@shell S-scheme photocatalyst for augmented hydrogen generation [J]. Chemical Engineering Journal, 2023, 471: 144490
    [19] Idrees I, Razzaq A, Zafar M, et al. Silver (Ag) doped graphitic carbon nitride (g-C3N4) photocatalyst for enhanced degradation of Ciprofloxacin (CIP) under visible light irradiation [J]. Arabian Journal of Chemistry, 2024, 17(3): 105615
    [20] Kumar A, Rana A, Sharma G, et al. High-Performance Photocatalytic Hydrogen Production and Degradation of Levofloxacin by Wide Spectrum-Responsive Ag/Fe3O4 Bridged SrTiO3/g-C3N4 Plasmonic Nanojunctions: Joint Effect of Ag and Fe3O4 [J]. ACS Applied Materials Interfaces, 2018, 10(47): 40474-40490
    [21] Choi H, Stathatos E, Dionysiou D D. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems [J]. Desalination, 2007, 202(1-3): 199-206
    [22] Li C F, Wu X L, Shan J Y, et al. Preparation, Characterization of Graphitic Carbon Nitride Photo-Catalytic Nanocomposites and Their Application in Wastewater Remediation: A Review [J]. Crystals, 2021, 11(7): 723
    [23] Yang X P, Luo Z, Wang D, et al. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange [J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2023, 288
    [24] Balakrishnan A, Chinthala M, Polagani R K, et al. Removal of tetracycline from wastewater using g-C3N4 based photocatalysts: A review [J]. Environmental Research, 2023, 216: 114660
    [25] Kang H J, Lee T G, Bari G, et al. Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation [J]. Catalysts, 2021, 11(1):37
    [26] Li R S, Wang B Q, Wang R. Photocatalytic Activities of g-C3N4 (CN) Treated with Nitric Acid Vapor for the Degradation of Pollutants in Wastewater [J]. Materials, 2023, 16(6):2177
    [27] Yan M D, Ma Y S, Zhang H H, et al. Enhanced Photocatalytic activity of graphitic carbon nitride/cadmium sulfide heterojunctions by protonating treatment [J]. Journal of Physics and Chemistry of Solids, 2018, 116: 50-57
    [28] Li X, Wu Q, Hussain M, et al. Sodium alkoxide-mediated g-C3N4 immobilized on a composite nanofibrous membrane for preferable photocatalytic activity [J]. RSC Advances, 2022, 12(24): 15378-15384
    [29] Zheng X T, Ananthanarayanan A, Luo K Q, et al. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications [J]. Small, 2015, 11(14): 1620-1636
    [30] Yan M, Hua Y Q, Zhu F F, et al. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics [J]. Applied Catalysis B: Environmental, 2017, 202: 518-527
    [31] Amjadi M, Shokri R, Hallaj T. A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2016, 153: 619-624
    [32] Zou J P, Wang L C, Luo J M, et al. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst [J]. Applied Catalysis B: Environmental, 2016, 193: 103-109
    [33] Liu J Y, Xu H, Xu Y G, et al. Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity [J]. Applied Catalysis B-Environmental, 2017, 207: 429-437
    [34] Xu J S, Brenner T J K, Chen Z P, et al. Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light [J].ACS Applied Materials Interfaces 2014, 6(19): 16481-16486
    [35] Jian X, Liu X, Yang H M, et al. Construction of carbon quantum dots/proton-functionalized graphitic carbon nitride nanocomposite via electrostatic self-assembly strategy and its application [J]. Applied Surface Science, 2016, 370: 514-521
    [36] 王一,赵云霞,蔡炜.Ni2P/g-C3N4/ZnIn2S4复合材料的制备及其光还原CO2性能研究[J/OL].南京信息工程大学学报(自然科学版):1-17WANG Yi, ZHAO Yunxia, CAI Wei. Preparation and Photoreduction CO2 Performance of Ni2P/g-C3N4/ZnIn2S4 Composite Materials [J/OL]. Journal of Nanjing University of Information Science Technology (Natural Science Edition): 1-17
    [37] Pan J, Sheng Y, Zhang J, et al. Preparation of carbon quantum dots/TiO2nanotubes composites and their visible light catalytic applications [J]. J Mater Chem A, 2014, 2(42): 18082-18086
    相似文献
    引证文献
引用本文

方玲,陈亮,陶涛. GQD掺杂的碱剥离g-C3N4复合材料的制备与光催化性能[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:55
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-07
  • 最后修改日期:2024-07-15
  • 录用日期:2024-07-16

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司