基于遗传算法的无人驾驶卡车路径跟踪控制研究
作者:
中图分类号:

U463.6;TP18

基金项目:

江苏省产业前瞻与关键核心技术项目(BE2022053-2);江苏省现代农业重点及面上项目(BE2021339);南京林业大学青年科技创新基金项目(CX2019018)


Path tracking control of unmanned truck based on genetic algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    路径跟踪在无人驾驶中起着至关重要的作用.为提高无人驾驶卡车在不同车速下路径跟踪的精度与稳定性,设计了一种基于改进遗传算法优化的线性二次调节器(LQR)进行路径跟踪.首先,基于自然坐标系建立车辆二自由度动力学模型和跟踪误差模型,并设计LQR控制器,采用前馈控制消除稳态误差,提高跟踪精度;其次,通过改进遗传算法对LQR的权重矩阵进行优化,以提高路径跟踪的精度与稳定性;最后,通过Matlab/Simulink-TruckSim联合仿真平台在不同工况下对所设计的LQR控制器控制效果进行仿真验证.结果表明,在双移线工况下,GA (遗传算法)优化后的LQR控制器在30 km/h和60 km/h跟踪精度分别提高了约68.5%和49.4%;在U形工况下,跟踪精度分别提高了约12.0%和25.5%,且具有更高的稳定性,位置误差和航向误差分别可控制在0.17 m和0.11 rad以内,证明了所提出的跟踪控制框架的有效性.

    Abstract:

    Path tracking is essential for unmanned driving.This article presents the design of a path tracking system for unmanned trucks,aiming to enhance accuracy and stability across various speeds.The system employs a Linear Quadratic Regulator (LQR) optimized through an improved Genetic Algorithm (GA).First,a two-degree-of-freedom dynamic model and a tracking error model of the vehicle are established based on natural coordinate system.Subsequently,an LQR controller is designed to eliminate steady-state errors and enhance tracking accuracy through feedforward control.Second,the genetic algorithm is enhanced to optimize the weight matrix of the LQR controller,resulting in improved accuracy and stability for path tracking.Finally,the control effectiveness of the designed LQR controller is simulated and verified across a range of operating conditions using the joint simulation platform of Matlab/Simulink and TruckSim.The results show that the GA-optimized LQR (Linear Quadratic Regulator) controller improves the tracking accuracy by about 68.5% and 49.4% at speeds of 30 km/h and 60 km/h,respectively,under the double lane change scenario;while under the U-turn scenario,the tracking accuracy is enhanced by approximately 12.0% and 25.5%,respectively.Specifically,it demonstrates higher stability,with position and heading errors controllable within 0.17 m and 0.11 rad,respectively,thereby validating the efficacy of the proposed tracking control scheme.

    参考文献
    相似文献
    引证文献
引用本文

张涛,赵奉奎,张涌,高峰,吕立亚,李冰林.基于遗传算法的无人驾驶卡车路径跟踪控制研究[J].南京信息工程大学学报(自然科学版),2024,16(6):791-800
ZHANG Tao, ZHAO Fengkui, ZHANG Yong, GAO Feng, LYU Liya, LI Binglin. Path tracking control of unmanned truck based on genetic algorithm[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(6):791-800

复制
分享
文章指标
  • 点击次数:30
  • 下载次数: 130
  • HTML阅读次数: 27
  • 引用次数: 0
历史
  • 收稿日期:2023-11-08
  • 在线发布日期: 2025-01-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司