基于HPO优化ECA-CNN-BiLSTM的变压器运行状态分类与识别方法
DOI:
作者:
作者单位:

1.重庆大学电气工程学院;2.中国南方电网云南电网有限责任公司电力科学研究院;3.南京理工大学自动化学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金


Classification and Recognition Method of Transformer Operating State Based on ECA-CNN-BiLSTM Optimized by HPO
Author:
Affiliation:

1.School of Electrical Engineering, Chongqing University;2.China Southern Power Grid Yunnan Power Grid Co., Ltd. Electric Power Research Institute;3.School of Automation, Nanjing University of Science and Technology

Fund Project:

The National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    变压器运行状态分类与准确识别对于变压器稳定运行和电力系统安全供电至关重要,此类研究目前还存在对变压器负荷数据的关注使用较少、机理模型复杂度高以及油温等数据和过负荷状态并不明确对应等问题。因此,本文提出一种改进的混合模型,结合了猎人猎物优化(Hunter-prey optimization,HPO)算法和高效通道注意力(Efficient channel attention,ECA)模块,应用于卷积神经网络(Convolutional neural network,CNN)和双向长短期记忆(Bidirectional long short-term memory,BiLSTM)神经网络,用于变压器运行状态分类和过负荷故障识别。选取某主变包含九种变压器负荷相关特征的数据作为样本,通过K-means++聚类和变压器正常周期性负荷分析选定负荷状态类别,基于HPO优化混合模型参数,提高模型的性能和泛化能力。通过对变压器负荷数据进行预处理和特征提取,使用优化后的模型进行负荷阶段的准确识别。实验结果表明,该方法的识别准确率可达99.24%,在变压器运行状态的分类和识别上取得了良好的效果。

    Abstract:

    The classification and accurate recognition of transformer operating states are very important for the stable operation of transformers and the safe power supply of power systems. At present, there are still some problems in this kind of research, such as less attention to the relevant data of transformer loads, high complexity of mechanism models and unclear correlation between oil temperature data and overload state. Therefore, this paper proposes an improved hybrid model that combines the hunter-prey optimization (HPO) algorithm with the efficient channel attention (ECA) module, applied to convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM) neural networks. It is used to classify transformer operating state and identify overload fault. The data of a main transformer containing nine characteristics related to transformer load are selected as samples, and the load state category is selected through K-Means ++ clustering and transformer normal periodic load analysis. The parameters of the hybrid model were optimized by HPO to improve the performance and generalization ability. Through pre-processing and feature extraction of transformer load data, the improved model is used to recognize the load state accurately. The experimental results show that the recognition accuracy of this method can reach 99.24%, and good results are obtained in the task of transformer operating state classification.

    参考文献
    相似文献
    引证文献
引用本文

邹德旭,毛雅婷,权浩,周涛,彭庆军,洪志湖,代维菊,王山.基于HPO优化ECA-CNN-BiLSTM的变压器运行状态分类与识别方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-05
  • 最后修改日期:2024-07-04
  • 录用日期:2024-07-10
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司