基于深度学习的城市积水深度预报研究
作者:
中图分类号:

P467;TP183

基金项目:

国家重点研发计划重点专项(2017 YFC1502000)


Urban waterlogging depth prediction via deep learning approach
Author:
  • ZHI Xiefei

    ZHI Xiefei

    Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;Weather Online (Wuxi) Science and Technology Co. Ltd./Weather Online Institute of Meteorological Applications, Wuxi 214000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CUI Biyao

    CUI Biyao

    Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JI Yan

    JI Yan

    Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着全球气候变化的不断加剧和城市化的快速发展,极端降雨过程导致的城市积涝灾害愈演愈烈,已成为世界各国许多城市面临的严重挑战.基于2021年5—8月浙江省诸暨市75个国家自动气象观测站的降雨量数据和典型积水点的积水深度数据,使用深度学习模型长短时记忆网络(Long Short Term Memory,LSTM)构建降雨量与积水深度的关系模型,提供未来间隔15 min的2 h内城市积涝水位预报,并与随机森林(Random Forest,RF)和人工神经网络(Artificial Neural Network,ANN)模型预报结果进行对比.预报结果表明,LSTM使用前4 h的积水与降雨量资料进行未来2 h积水预报的结果最优,均方根误差(RMSE)小于5.6 cm,相关系数(CC)大于0.93,纳什效率系数(NSE)大于0.86,预报效果优于RF和ANN,所构建的积水预报人工智能模型具有较好的预报效果.

    Abstract:

    With the continuous intensification of global climate change and the rapid urbanization,urban waterlogging disasters caused by extreme rainfall events have become increasingly severe,posing a serious challenge for many cities around the world.Here,we propose a deep learning approach to predict urban waterlogging depth,which is based on Long Short-Term Memory (LSTM) and rainfall data from May to August 2021 measured by 75 national automatic meteorological observation stations in Zhejiang's Zhuji city and the water depth data of a typical waterlogging site.The relationship between rainfall and waterlogging depth constructed by LSTM provides the next 2-hour urban waterlogging depth forecast with an interval of 15 minutes.When compared with Random Forest (RF) and Artificial Neural Network (ANN) models,the proposed LSTM approach,using water depth and precipitation data over the past 4 hours to predict the next 2-hour waterlogging depth,demonstrates the best performance by lower root mean square error (<5.6 cm),higher correlation coefficient (>0.93) and Nash-Sutcliffe efficiency coefficient (>0.86).It can be concluded that the proposed deep learning approach is feasible and applicable for urban waterlogging depth prediction.

    参考文献
    相似文献
    引证文献
引用本文

智协飞,崔碧瑶,季焱.基于深度学习的城市积水深度预报研究[J].南京信息工程大学学报(自然科学版),2024,16(6):771-781
ZHI Xiefei, CUI Biyao, JI Yan. Urban waterlogging depth prediction via deep learning approach[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(6):771-781

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-11
  • 在线发布日期: 2025-01-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司