基于扩散过程的生成对抗网络图像修复算法
作者:
中图分类号:

TP391.4

基金项目:

国家自然科学基金(11861003);辽宁省教育厅高等学校基本科研项目(LJKZ0157)


Generative adversarial network image inpaiting based on diffusion process
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对现有图像修复算法修复后的图像可能会出现纹理模糊,以及训练过程中存在的不稳定现象,提出一种基于扩散过程的生成对抗网络图像修复算法.将扩散模型引入至双判别器生成对抗网络,生成器生成的图像与真实图像经过前向扩散过程,得到带有高斯噪声的修复图像和真实图像,将其作为判别器的输入,在提高修复质量的同时,增加了模型训练稳定性.在损失函数中引入风格损失与感知损失来学习语义特征差异,消除动态模糊,使修复结果保留更多细节和边缘信息.在CelebA和Places2数据集上分别做定性、定量分析及消融实验,评价结果及修复效果显示,所提出的算法均有较好的表现.与所对比的当前修复方法相比,峰值信噪比和结构相似性分别平均提高了1.26 dB和1.84%,L1误差平均下降了25.7%,且根据损失函数变化可以看出经过扩散过程的图像修复算法训练更稳定.

    Abstract:

    To address the issues of blurry texture of the repaired images and instable training process in existing image inpainting algorithms,this paper proposes a Generative Adversarial Network (GAN) based image inpainting approach leveraging the diffusion process.By incorporating the diffusion model into a dual-discriminator GAN,the generated images from the generator and real images undergo a forward diffusion process to obtain the inverted images and real images with Gaussian noise.These images are then fed into the discriminator to enhance the inpainting quality and improve the model training stability.Style loss and perceptual loss are introduced into the loss function to learn semantic feature differences,eliminate motion blur,and preserve more details and edge information in the inpainting results.Qualitative and quantitative analyses,along with ablation experiments,have been conducted on the datasets of CelebA and Places2.The evaluation and restoration outcomes show the superior performance of the proposed approach.Compared with current inpainting methods,the proposed approach achieves an average improvement of 1.26 dB in Peak Signal-To-Noise Ratio (PSNR) and 1.84% in Structural Similarity Index Measure (SSIM),while reducing the L1 error by an average of 25.7%.Furthermore,the changes in the loss function indicate that the image inpainting algorithm with diffusion process exhibits more stable training behavior.

    参考文献
    相似文献
    引证文献
引用本文

杜洪波,袁雪丰,刘雪莉,朱立军.基于扩散过程的生成对抗网络图像修复算法[J].南京信息工程大学学报(自然科学版),2024,16(6):751-759
DU Hongbo, YUAN Xuefeng, LIU Xueli, ZHU Lijun. Generative adversarial network image inpaiting based on diffusion process[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(6):751-759

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-18
  • 在线发布日期: 2025-01-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司