基于双流对比特性学习和图像多尺度退化增强的小目标检测方法
作者:
中图分类号:

TP391.4

基金项目:

中国博士后科学基金(2022M72224 8);中央高校基本科研业务费(ZHMH2022-004,J2022-025,J2023-026);民航飞行技术与飞行安全重点实验室自主项目(FZ2021ZZ03)


Small object detection based on dual-stream contrastive feature learning and multi-scale image degradation augmentation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对小目标检测任务中目标图像尺寸小、目标特征信息模糊、目标和背景难区分等问题,提出一种基于双流对比特性学习和图像多尺度退化增强的小目标检测方法.首先,将对比学习模型的输入图像进行多尺度退化增强,增强算法对小目标的捕获感知;其次,在空间域和频率域同时进行对比学习表征,以学习更具鉴别性的目标识别特征,增强模型对目标与背景的区分能力,从而提高小目标检测的效果.为验证所提方法的有效性设计了消融实验,并对比分析了与其他先进算法的检测性能优劣.实验结果表明:所提方法在MS COCO数据集上平均精度均值mAP相较基线算法提升3.6个百分点,小目标平均精度均值mAPS相较主流先进算法提升7.7个百分点;在VisDrone2019数据集上,所提方法平均精度均值mAP较基线算法提升2.4个百分点,所提方法综合性能优于基线算法与其他主流先进算法.可视化检测效果分析表明,所提方法在小目标检测上的漏检、误检问题得到较大改善.

    Abstract:

    To address the challenges in small object detection tasks,such as the small size of target images,blurred target features,and difficulty in distinguishing targets from backgrounds,a method based on dual-stream contrastive feature learning and multi-scale image degradation augmentation is proposed.First,the input images of the contrastive learning model are subjected to multi-scale degradation augmentation,thus enhancing the model's ability to perceive and capture small targets.Second,contrastive learning representations are conducted in both spatial and frequency domains simultaneously to learn more discriminative target recognition features,thereby improving the model's ability to differentiate between targets and backgrounds.To verify the effectiveness of the proposed scheme,ablation experiments are designed,and the detection performance is compared with that of other advanced algorithms.Experimental results show that the proposed scheme achieves an improvement of 3.6% in mean Average Precision (mAP) over the baseline algorithm on the MS COCO dataset,and an improvement of 7.7% in mAP for small objects (mAPS) compared to mainstream advanced algorithms.On the VisDrone2019 dataset,the proposed method achieves a 2.4% increase in mAP compared to the baseline algorithm,demonstrating its superior overall performance over the baseline algorithm and other mainstream advanced algorithms.Visual analysis of detection results indicates a significant improvement in the rates of false negatives and false positives for small object detection.

    参考文献
    引证文献
引用本文

王宇,何志,康朋新,涂晓光,周超,刘建华,雷霞,王文敬.基于双流对比特性学习和图像多尺度退化增强的小目标检测方法[J].南京信息工程大学学报(自然科学版),2024,16(6):737-750
WANG Yu, HE Zhi, KANG Pengxin, TU Xiaoguang, ZHOU Chao, LIU Jianhua, LEI Xia, WANG Wenjing. Small object detection based on dual-stream contrastive feature learning and multi-scale image degradation augmentation[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(6):737-750

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-25
  • 在线发布日期: 2025-01-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司