基于改进生成对抗网络的样本不均衡轴承故障诊断方法
DOI:
作者:
作者单位:

华北电力大学

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省中央引导地方科技发展资金项目(226Z2103G)


A Novel Approach for Diagnosis Unbalanced Bearing Faults Using an Enhanced Generative Adversarial Network
Author:
Affiliation:

North China Electric Power University

Fund Project:

the central government-guided local science and technology development fund project(Hebei Province) (226Z2103G)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习算法由于其在故障诊断中强大的特征提取能力而被大量应用于各领域,然而实际生产过程经常面临故障样本数量远低于正常样本的情况,从而导致故障诊断模型准确率下降等问题。为此,本文提出了一种改进循环生成对抗网络的样本不均衡轴承故障诊断方法,并以旋转机械滚动轴承振动故障诊断为例对方法进行验证。该方法将原始振动信号的时频图作为循环生成对抗网络的输入;为克服训练不稳定、模型不能不能及时收敛等问题,引入谱归一化和权值衰减,利用改进的循环生成对抗网络生成更多的故障样本;最后采用Swin Transformer模型来进行故障诊断,并与RF、SAE、SVM、CNN进行对比。诊断实验分为样本扩充、正常样本与故障样本比例不平衡以及小样本情况。实验结果表明,本文提出方法可以在训练样本数量较少时生成较高质量的合成样本,同时Swin Transformer诊断方法较其他方法故障诊断精度更高,在不平衡数据的故障诊断方面具有很大的潜力。

    Abstract:

    The robust feature extraction capability of deep learning (DL) has rendered it a popular choice for fault diagnosis in various industries. However, the accuracy of fault diagnosis models is often compromised due to an imbalance between normal and faulty data during the production process. To address this issue, this study proposes an unbalanced bearing fault sample diagnostic method based on a cycle generative adversarial network, using vibration fault diagnosis of rotating machinery rolling bearings as an illustrative example for validation purposes. The method utilizes continuous wavelet transform (CWT) to convert the original vibration signal into time-frequency maps, which are then utilized as input for the cycle generative adversarial network. To address issues related to unstable training and timely convergence of the model, spectral normalization and weight decay techniques are introduced, thereby enhancing the performance of the improved cycle generative adversarial network in generating additional fault samples. Finally, the Swin Transformer model is employed for fault diagnosis and compared with other methods such as Random Forest (RF), Sparse Autoencoder (SAE), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). The diagnostic experiment encompasses sample expansion, imbalanced proportion between normal and faulty samples, as well as scenarios involving limited sample sizes. Experimental results demonstrate that the proposed method can generate higher quality synthetic samples when training data is scarce; moreover, utilizing the Swin Transformer for diagnosis yields superior accuracy compared to alternative approaches such as RF, SAE, SVM, or CNN models – thus showcasing significant potential in addressing imbalanced data within fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

马良玉,黄日灏,段晓冲,胡景琛,高海天,马进.基于改进生成对抗网络的样本不均衡轴承故障诊断方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-31
  • 最后修改日期:2024-07-17
  • 录用日期:2024-07-18
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司