基于改进生成对抗网络的样本不均衡轴承故障诊断方法
作者单位:

华北电力大学

基金项目:

河北省中央引导地方科技发展资金项目(226Z2103G)


A Novel Approach for Diagnosis Unbalanced Bearing Faults Using an Enhanced Generative Adversarial Network
Author:
Affiliation:

North China Electric Power University

Fund Project:

the central government-guided local science and technology development fund project(Hebei Province) (226Z2103G)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    深度学习算法由于其在故障诊断中强大的特征提取能力而被大量应用于各领域,然而实际生产过程经常面临故障样本数量远低于正常样本的情况,从而导致故障诊断模型准确率下降等问题。为此,本文提出了一种改进循环生成对抗网络的样本不均衡轴承故障诊断方法,并以旋转机械滚动轴承振动故障诊断为例对方法进行验证。该方法将原始振动信号的时频图作为循环生成对抗网络的输入;为克服训练不稳定、模型不能不能及时收敛等问题,引入谱归一化和权值衰减,利用改进的循环生成对抗网络生成更多的故障样本;最后采用Swin Transformer模型来进行故障诊断,并与RF、SAE、SVM、CNN进行对比。诊断实验分为样本扩充、正常样本与故障样本比例不平衡以及小样本情况。实验结果表明,本文提出方法可以在训练样本数量较少时生成较高质量的合成样本,同时Swin Transformer诊断方法较其他方法故障诊断精度更高,在不平衡数据的故障诊断方面具有很大的潜力。

    Abstract:

    The robust feature extraction capability of deep learning (DL) has rendered it a popular choice for fault diagnosis in various industries. However, the accuracy of fault diagnosis models is often compromised due to an imbalance between normal and faulty data during the production process. To address this issue, this study proposes an unbalanced bearing fault sample diagnostic method based on a cycle generative adversarial network, using vibration fault diagnosis of rotating machinery rolling bearings as an illustrative example for validation purposes. The method utilizes continuous wavelet transform (CWT) to convert the original vibration signal into time-frequency maps, which are then utilized as input for the cycle generative adversarial network. To address issues related to unstable training and timely convergence of the model, spectral normalization and weight decay techniques are introduced, thereby enhancing the performance of the improved cycle generative adversarial network in generating additional fault samples. Finally, the Swin Transformer model is employed for fault diagnosis and compared with other methods such as Random Forest (RF), Sparse Autoencoder (SAE), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). The diagnostic experiment encompasses sample expansion, imbalanced proportion between normal and faulty samples, as well as scenarios involving limited sample sizes. Experimental results demonstrate that the proposed method can generate higher quality synthetic samples when training data is scarce; moreover, utilizing the Swin Transformer for diagnosis yields superior accuracy compared to alternative approaches such as RF, SAE, SVM, or CNN models – thus showcasing significant potential in addressing imbalanced data within fault diagnosis.

    参考文献
    [1] . 董路南,邓艾东,范永胜,等.基于VMD和改进DenseNet的滚动轴承故障诊断[J]. 动力工程学报, 2023, 43(11): 1500-1505+1522.DONG Lunan, DENG Aidong, FAN Yongsheng, et al. Rolling Bearing Fault Diagnosis Based on VMD and Improved DenseNe[J]. Journal of Chinese Society of Power Engineering, 2023, 43(11): 1500-1505+1522.
    [2] . YANG Zhibo, ZHANG Junpeng, ZHAO Zhibin, et al. Interpreting network knowledge with attention mechanism for bearing fault diagnosis[J]. Applied Soft Computing Journal, 2020, 97(PB): 106829-.
    [3] . LI Wei, ZHONG Xiang, SHAO Haidong, et al. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework[J]. Advanced Engineering Informatics, 2022, 52.
    [4] . Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27.
    [5] . YI Xin, Walia E, Babyn P. Generative adversarial network in medical imaging: A review[J]. Medical Image Analysis, 2019, 58101552.
    [6] . 杜洪波, 袁雪丰, 刘雪莉, 等. 基于扩散过程的生成对抗网络图像修复算法[J/OL]. 南京信息工程大学学报: 1-11 [2024-05-30]. https://doi.org/10.13878/j.cnki.jnuist. 20240118001.DU Hongbo, YUAN Xuefeng, LIU Xueli, et al. Generative Adversarial Network Image Restoration Algorithm Based on Diffusion Process[J/OL]. Journal of Nanjing University of Information Science Technology: 1-11[2024-05-30]. https://doi.org/10.13878/j.cnki.jnuist.20240118001.
    [7] . Diwang R, Xuran C, Clemens G, et al. Improvement of Generative Adversarial Network and Its Application in Bearing Fault Diagnosis: A Review[J]. Lubricants, 2023, 11(2): 74-74.
    [8] . Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.[J]. CoRR, 2015, abs/ 1511. 06434.
    [9] . Arjovsky M, Chintala S, Léon Bottou. Wasserstein generative adversarial networks[J]. PMLR, 2017. DOI: 10.1088/1742-6596/2586/1/012157.
    [10] . Gulrajani I, Ahmed F, Arjovsky M, et al. Improved Training of Wasserstein GANs[J]. 2017. DOI: 10. 48550/ arXiv. 1704.00028.
    [11] . 郭伟,邢晓松.基于改进卷积生成对抗网络的少样本轴承智能诊断方法[J]. 中国机械工程, 2022, 33(19): 2347-2355.GUO Wei, XING Xiaosong. Intelligent Fault Diagnosis of Bearings with Few Sample Based on an Improved Convolutional Generative Adversarial Network[J]. China Mechanical Engineering, 2022, 33(19): 2347-2355.
    [12] . 柳雅倩, 蔡浩原, 李文宽, 等.小样本条件下轴承故障的DCGAN诊断方法[J]. 振动.测试与诊断, 2023, 43(04): 817-823+836.LIU Yaqian, CAI Haoyuan, LI Wenkuan, et al. Research on Deep Convolutional Generative Adversarial Networks Diagnosis Method of Bearing Fault Under Small Sample Condition[J]. Journal of Vibration,Measurement Diagnosis, 2023, 43(04): 817-823+836.
    [13] . Zhu J Y , Park T , Isola P ,et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[J]. IEEE, 2017. DOI:10.1109/ ICCV. 2017. 244.
    [14] . YI Xing, PAN Hao, ZHAO Huaici, et al. Cycle Generative Adversarial Network Based on Gradient Normalization for Infrared Image Generation[J]. Applied Sciences, 2023, 13(1): 635-635.
    [15] . 张永宏, 张中洋, 赵晓平, 等.基于VAE-GAN和FLCNN的不均衡样本轴承故障诊断方法[J]. 振动与冲击, 2022, 41(09): 199-209.ZHANG Yonghong, ZHANG Zhongyang, ZHAO Xiaoping, et al. Bearing fault diagnosis method based on VAE - GAN and FLCNN unbalanced samples[J]. Journal of Vibration and Shock, 2022, 41(09): 199-209.
    [16] . 何强, 唐向红, 李传江, 等. 负载不平衡下小样本数据的轴承故障诊断[J]. 中国机械工程, 2021, 32(10): 1164-1171+1180.HE Qiang, TANG Xianghong, LI Chuanjiang, et al. Bearing Fault Diagnosis Method Based on Small Sample Data under Unbalanced Loads[J]. China Mechanical Engineering, 2021, 32(10): 1164-1171+1180.
    [17] . LIU Shaowei, JIANG Hongkai, WU Zhenghong, et al. Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis[J]. Mechanical Systems and Signal Processing, 2022, 163.
    [18] . 苏元浩,孟良,许同乐,等.不平衡数据集下优化WGAN的风电机组齿轮箱故障诊断方法[J].太阳能学报,2022,43(11):148-155.SU Yuanhao, MENG Liang, XU Tongle, et al. WIND TURBINE GEARBOX FAULT DIAGNOSIS METHOD FOR OPTIMIZED WGAN WITH UNBALANCED DATA SETS[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 148-155.
    [19] . 李可, 贺少杰, 宿磊, 等. 基于进化算法优化GAN的轴承故障诊断[J]. 振动.测试与诊断, 2023, 43(02): 298-303+410.LI Ke, HE Shaojie, SU Lei, et al. Bearing Fault Diagnosis Based on Generative Adversarial Nets Optimized by Evolutionary Conditions[J]. Journal of Vibration,Measurement Diagnosis, 2023, 43(02): 298-303+410.
    [20] . Lee J, Pack J, Lee I. Fault Diagnosis of Induction Motor Using Convolutional Neural Network[J]. Applied Sciences, 2019, 9(15):
    [21] . WANG Fei ,LIU Ruonan ,Hu Qinghua , et al. Cascade Convolutional Neural Network with Progressive Optimization for Motor Fault Diagnosis Under Non-stationary Conditions[J].IEEE Transactions on Industrial Informatics,2020,17(4):1-1.
    [22] . 周文宣,刘洋,邓敏强,等.基于CAE和CNN的变工况下滚动轴承智能故障诊断研究[J].动力工程学报,2022,42(01):43-48.ZHOU Wenxuan, LIU Yang, DENG Minqiang, et al. Research on Intelligent Fault Diagnosis of Rolling Bearings Under Variable Conditions Based on CAE and CNN[J]. Journal of Chinese Society of Power Engineering, 2022, 42(01): 43-48.
    [23] . LIU Ze, LIN Yutong, Cao Yue, et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[J]. 2021. DOI: 10.48550/arXiv. 2103. 1403.
    [24] . 刘杰, 谭玉涛, 谷艳玲, 等. 不均衡样本下轴承故障的LSGAN-Swin Transformer诊断方法[J/OL]. 振动工程学报, 1-13[2024-04-18]. http: //kns.cnki.net/ kcms/detail/32.1349.TB.20231226. 1725.002.html.LIU Jie, TAN Yutao, GU Yanling, et al. LSGAN-Swin Transformer diagnosis method of bearing fault under unbalanced samples[J/OL]. Journal of Vibration Engineering, 1-13[2024-04-18]. http: //kns.cnki.net/ kcms/detail/32.1349. TB. 20231226. 1725.002.html.
    [25] . Miyato T , Kataoka T , Koyama M ,et al. Spectral Normalization for Generative Adversarial Networks[J]. 2018. DOI: 10 .48550/arXiv. 1802.05957.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马良玉,黄日灏,段晓冲,胡景琛,高海天,马进.基于改进生成对抗网络的样本不均衡轴承故障诊断方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:51
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-31
  • 最后修改日期:2024-07-17
  • 录用日期:2024-07-18

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司