AIGC图像质量评估指标研究
DOI:
作者:
作者单位:

1.河南交通职业技术学院;2.河南师范大学 软件学院;3.黄河水利职业技术学院

作者简介:

通讯作者:

中图分类号:

TP302.7

基金项目:

河南省高等教育教学改革研究与实践项目(2024SJGLX173,2019SJGLX690);河南省重点研发专项(231111210200,241111210300);中央引导地方科技发展专项(Z20221343001);黄河水利职业技术学院测绘地理信息职业教育研究课题(2021CHYB01)


Research on AIGC Image Quality Evaluation Indicators
Author:
Affiliation:

1.Henan College of Transportation;2.Henan Normal University;3.Yellow River Conservancy Technical Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工智能生成内容(AIGC)技术可为人类提供各种类型的信息生成服务,如何对AIGC进行准确的质量评估,是当前亟待解决的问题。本文主要针对大模型生成图像的质量及其评估指标开展深入研究。首先,从技术方面概述了当前评估AIGC的常见方法,如深度学习方法和计算机视觉方法等,介绍并分析了准确性、相关性、一致性、可解释性等指标在不同类型生成内容评估方面的表现。然后,为了展示评估指标的实际作用,以文心一言为例,对其生成的图像进行评估实验:使用直方图和噪点数量等量化指标对生成图像进行客观评估;使用整体协调性和美观性等视觉感官指标对生成图像进行主观评估。最后,综合对比客观评估和主观评估的结果,筛选出色偏、噪点数量、心理预期等AIGC产品质量评估的高可靠性指标。实验结果验证了综合使用主客观评估指标进行AIGC产品评估方法的有效性和可靠性。

    Abstract:

    Artificial Intelligence Generated Content (AIGC) technology can provide various types of information generation services for humans. The current urgent issue is how to accurately evaluate the quality of AIGC. This study conducts an in-depth research on the quality of images generated by large models and their evaluation metrics. Firstly, it summarizes the common methods for evaluating AIGC from a technical perspective, such as deep learning methods and computer vision methods. It focuses on introducing the metrics used in the evaluation methods, including accuracy, relevance, consistency, and interpretability, and analyzes their performance in evaluating different types of generated content. Then, to demonstrate the practical application of these evaluation metrics, this study conducts an evaluation experiment on the images generated by ERNIE Bot as an example. Objective evaluation of the generated images is carried out using quantitative metrics such as histograms and noise counts. Subjective evaluation is performed by assessing the overall coordination and aesthetic appeal of the images. Finally, by comparing the results of objective and subjective evaluations, this study screens out highly reliable metrics for evaluating the quality of AIGC images, such as color bias, noise count, and psychological expectations. This research not only provides a theoretical reference for evaluating the quality of AIGC, but also proves the effectiveness and reliability of using both objective and subjective evaluation metrics for AIGC product evaluation through experimental results. It has certain reference significance for obtaining feedback on model performance and optimizing performance.

    参考文献
    相似文献
    引证文献
引用本文

邢润媚,常升龙,何宽,朱曙光,高琼,胡昊. AIGC图像质量评估指标研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-15
  • 最后修改日期:2024-07-11
  • 录用日期:2024-07-12
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司