基于Alpha Shapes轮廓点云识别算法的洞室表面形变区域提取方法
作者:
作者单位:

河海大学地球科学与工程学院

基金项目:

钱投科创项目(QT202208A001)


Extraction Method of Cavern Surface Deformation Region Based on Alpha Shapes Contour Point Cloud Recognition Algorithm
Author:
Affiliation:

School of Earth Sciences and Engineering, Hohai University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对三维激光扫描密集点云提取洞室表面变形信息的问题,本文设计了一种基于改进的Alpha Shapes算法识别洞室轮廓点云和多尺度模型到模型的点云比对(Multiscale Model-to-Model Cloud Comparison,M3C2)的洞室表面变形监测方法。首先对获取到的两期洞室表面点云数据进行配准,采用改进的Alpha Shapes算法识别洞室表面外轮廓点云。获得的两期洞室表面外轮廓点云经精配准后,再采用M3C2算法进行各点变形值计算,最后进行距离聚类提取连续形变区域。实验结果表明:该方法能够有效剔除点云中细小沟壑处的点及受到混合像元影响的点,在洞室截面到扫描仪距离10m的范围内,两期点云剔除率分别为14.17%及13.52%,在70m范围内,分别为6.25%及6.42%;该方法能够准确高效地提取出2倍配准误差以上的洞室表面形变区域。

    Abstract:

    Aiming at the problem of extracting cavern surface deformation by three-dimensional laser scanning dense point clouds, a method of cavern surface deformation monitoring based on Multiscale Model-to-Model Cloud Comparison(M3C2) and improved Alpha Shapes algorithm is proposed. Firstly, the two phase surface point cloud data are registered, and the improved Alpha Shapes algorithm is used to identify the outer contour point cloud. After the fine registration of the two phase outer contour point clouds, the M3C2 algorithm is used to calculate the deformation value of each point, and finally the continuous deformation region is extracted by distance clustering. The experimental results show that the proposed method can effectively eliminate the points at the small furrows and the points affected by the mixed pixels. The removal rates of the point cloud in the two phases are 14.17% and 13.52% within 10m of the cavern section to the scanner, respectively, 6.25% and 6.42% within 70m. This method can accurately and efficiently extract the deformation region of the cavern surface with more than 2 times the registration error.

    参考文献
    [1] Abellan A, Derron M H, Jaboyedoff M. “Use of 3D Point Clouds in Geohazards” Special Issue: Current Challenges and Future Trends[J]. Remote Sensing, 2016, 8(2): 130.
    [2] Meng Z, He M, Tao Z, et al. Three-Dimensional Numerical Modeling and Roof Deformation Analysis of Yuanjue Cave Based on Point Cloud Data[J]. Advances in Civil Engineering, 2020, 2020: 1-13.
    [3] Liu M, Sun X, Wang Y, et al. Deformation Measurement of Highway Bridge Head Based on Mobile TLS Data[J]. IEEE Access, 2020, 8: 85605-85615.
    [4] Luo R, Zhou Z, Chu X, et al. 3D deformation monitoring method for temporary structures based on multi-thread LiDAR point cloud[J]. Measurement, 2022, 200: 111545.
    [5] 王珂. 三维激光扫描技术在地下洞库中的应用与研究[D]. 中国地质大学(北京), 2019.Wang ke. Application and Research of Three-dimensional Laser Scanning Technology in Underground Caverns[D]. China University of Geosciences (Beijing), 2019
    [6] 许增光, 王亚萍, 肖瑜, 等. 长深隧洞突涌水危险性等级指标及评价方法[J]. 中国公路学报, 2018, 31(10): 91-100.XU Zeng-guang, WANG Ya-ping, XIAO Yu et al. Risk Rating Index and Evaluation Method for Water Inrush in Long-deep Tunnels[J]. China J.Highw. Transp., 2018, 31(10): 91-100.
    [7] Qian J, Zhou Y. Study on quality and safety monitoring scheme of tunnel construction based on 3D laser scanning[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804: 022073.
    [8] 张徐. 三维激光扫描技术在隧道工程检测中的应用研究[J]. 工程技术研究, 2023, 8(10): 213-215.ZHANG Xu. Research on the Application of 3D Laser Scanning Technology in Tunnel Engineering Detection[J]. Engineering technology research, 2023, 8(10): 213-215.
    [9] Jia D, Zhang W, Liu Y. Systematic Approach for Tunnel Deformation Monitoring with Terrestrial Laser Scanning[J]. Remote Sensing, 2021, 13(17): 3519.
    [10] Sun H, Liu S, Zhong R, et al. Cross-Section Deformation Analysis and Visualization of Shield Tunnel Based on Mobile Tunnel Monitoring System[J]. Sensors, 2020, 20(4): 1006.
    [11] Yi C, Lu D, Xie Q, et al. Tunnel Deformation Inspection via Global Spatial Axis Extraction from 3D Raw Point Cloud[J]. Sensors, 2020, 20(23): 6815.
    [12] Yasuda Naotoshi, Cui Ying. Deformation estimation of a circular tunnel from a point cloud using elliptic Fourier analysis[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2022, 125.
    [13] 潘东峰, 杨超, 吴一同, 等. 利用TLS技术进行地铁隧道断面提取及变形监测分析[J]. 测绘通报, 2022(4): 130-133.PAN Dongfeng, YANG Chao, WU Yitong, et al. Section extraction and deformation monitoring analysis of metro tunnel using TLS technology[J]. Bulletin of surveying and mapping, 2022(4): 130-133.
    [14] 王永锋, 郑德华. 基于轨道移动式激光扫描多期点云的隧道断面变形提取方法[J]. 南京师大学报(自然科学版), 2023, 46(2): 25-33.Wang Yongfeng, Zheng Dehua. Extraction Method of Tunnel-section Deformation Based on Orbital Mobile Laser Scanning Multi-phase Point Cloud[J]. JOURNAL OF NANJING NORMAL UNIVERSITY( Natural Science Edition), 2023, 46(2): 25-33.
    [15] 周人飞, 赵青, 胡斌, 等. 基于深度学习和激光点云的隧洞纵向变形检测[J]. 云南水力发电, 2023, 39(8): 45-51.ZHOU Ren-fei, ZHAO Qing, HU Bin, et al. Tunnel Longitudinal Deformation Detection Based on Deep Learning and Laser Point Cloud[J]. YUNNAN WATER POWER, 2023, 39(8): 45-51.
    [16] Pan Yirong, Xia Yonghua, Li Yueyu, et al. Research on stability analysis of large karst cave structure based on multi-source point clouds modeling[J]. Earth Science Informatics, 2023, 16(2).
    [17] Jiang Q, Shi Y E, Yan F, et al. Reconstitution method for tunnel spatiotemporal deformation based on 3D laser scanning technology and corresponding instability warning[J]. Engineering Failure Analysis, 2021, 125: 105391.
    [18] 韦征, 曾庆谊, 周建强, 等. 基于概率密度的隧道三维激光扫描监测方法[J]. 铁道工程学报, 2023, 40(2): 66-72.WEI Zheng,ZENG Qingyi,ZHOU Jianqiang, et al. Tunnel 3D Laser Scanning Monitoring Method Based on Probability Density[J]. JOURNAL OF RAILWAY ENGINEERING SOCIETY, 2023, 40(2): 66-72.
    [19] Edelsbrunner H, Mücke E P. Three-dimensional alpha shapes[J]. ACM Transactions on Graphics, 1994, 13(1): 43-72.
    [20] 李世林, 李红军. 自适应步长的Alpha-shape表面重建算法[J]. 数据采集与处理, 2019, 34(3): 491-499.Li Shilin, Li Hongjun. Surface Reconstruction Algorithm Using Self?adaptive Step Alpha?shape[J]. Journal of Data Acquisition and Processing, 2019, 34(3): 491-499.
    [21] LI Qing, GAO Xiangwei, FEI Xianyun, 等. Construction of Tree Crown Three-dimensional Model Using Alpha-shape Algorithm[J]. Bulletin of surveying and mapping, 2018(12): 91-95.
    [22] 孟永东, 袁昌纬, 田斌, 等. 基于无人机航测点云比对的滑坡表面位移监测研究[J]. 测绘通报, 2022: 1-9.MENG Yongdong, YUAN Changwei, TIAN Bin, et al. Study on landslide surface displacement monitoring based on drones aerial survey point cloud comparison[J]. Bulletin of Surveying and Mapping, 2022: 1-9.
    [23] Lague D, Brodu N, Leroux J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 10-26.
    [24] 程宇翔, 郑德华, 刘存泰, 等. 基于入射角定权的球形标靶点云拟合方法[J]. Geospatial Information, 2023, 21(6): 12-16+57. CHENG Yuxiang, ZHENG Dehua, LIU Cuntai, et al. Point Cloud Fitting Method of Spherical Target Based on Incident Angle Weighting Geospatial Information[J]. 2023, 21(6): 12-16+57.
    [25] Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张雨婷,郑德华,李思远.基于Alpha Shapes轮廓点云识别算法的洞室表面形变区域提取方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:72
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-13
  • 最后修改日期:2024-06-19
  • 录用日期:2024-06-20

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司