基于迁移学习的手部自然动作脑电识别
DOI:
作者:
作者单位:

东南大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划课题;江苏省前沿引领技术基础研究专项;江苏省自然科学基金面上项目


EEG Recognition of Natural Hand Movements Based on Transfer Learning
Author:
Affiliation:

Southeast University

Fund Project:

National Key Research and Development Program of China;the Basic Research Project of Leading Technology of Jiangsu Province;the Natural Science Foundation of Jiangsu Province

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在脑机接口(BCI)领域,手部自然动作脑电识别对实现自然而精确的人机交互具有重要意义。然而,在针对手部自然动作范式的研究中,利用迁移学习提高模型在不同被试之间泛化能力的尝试仍然较少。针对这一问题,本文选择掌握、指捏和旋拧三种手部自然动作开展了脑电实验,并在实验数据集上验证了CA-MDM和CA-JDA这两种迁移学习算法的有效性。实验结果显示,CA-JDA在二分类和四分类任务中的平均准确率分别为60.51%±5.78%和34.89%±4.42%,而CA-MDM在相同分类任务中的表现为63.88%±4.59%和35.71%±4.84%,该结果突显了基于黎曼空间的分类器在处理协方差特征时的优势。本文的研究不仅证实了迁移学习在手部自然动作范式中的可行性,同时为缩短BCI系统的校准时间,实现自然人机交互策略提供了帮助。

    Abstract:

    In the field of Brain-Computer Interfaces (BCI), the recognition of natural hand movements through EEG is crucial for achieving natural and precise human-machine interaction. However, attempts to enhance the generalization ability of models across different subjects using transfer learning are still rare in studies focusing on natural hand movement paradigms. Addressing this issue, this paper conducted EEG experiments with three natural hand movements: grasping, pinching, and twisting. We validated the effectiveness of two transfer learning algorithms, CA-MDM and CA-JDA, on the experimental dataset. The results showed that CA-JDA achieved average accuracies of 60.51%±5.78% and 34.89%±4.42% in binary and four-class tasks, respectively, while CA-MDM performed at 63.88%±4.59% and 35.71%±4.84% in the same tasks, highlighting the advantages of Riemannian space-based classifiers in handling covariance features. This study not only confirms the feasibility of transfer learning in natural hand movement paradigms but also aids in reducing calibration time for BCI systems and implementing natural human-machine interaction strategies.

    参考文献
    相似文献
    引证文献
引用本文

薛沐辉,徐宝国,李浪,宋爱国.基于迁移学习的手部自然动作脑电识别[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-12
  • 最后修改日期:2024-05-28
  • 录用日期:2024-05-28
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司