千年时序滨海耕地土壤有机碳的演变特征分析
作者:
作者单位:

南京信息工程大学 地理科学学院

中图分类号:

S159.2

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Evolution of soil organic carbon in coastal cultivated land over millennia
Author:
Affiliation:

School of Geographical Sciences,Nanjing University of information Science Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    海岸带是海-陆界面有机碳固定和储存的关键区域,滨海耕地土壤长时间尺度发育下有机碳形成了显著的时空演变特征与规律。本研究的目的是分析南黄海粉砂-淤泥质海岸带剖面土壤有机碳千年以来的垂直分布特征和时间演变规律。依据历史海岸线位置共在研究区内北部射阳和中部东台两个地区采集了二十个1米深的土壤剖面,分析了土壤有机碳质量分数(SOCC)、密度(SOCD)和储量(SOCS)的时空分布特征及其与土壤理化属性的相关性。结果表明:1)千年以来滨海耕地土壤剖面有机碳质量分数在1.00~24.44 g·kg-1内变化,有机碳密度在0.13~2.78 g·m-2内变化,两地区内有机碳质量分数和密度均随深度增加而降低;2)土壤有机碳储量的时间累积函数在两地区内有所差异,射阳地区有机碳储量随着成土年龄表现为线性函数,而东台地区有机碳储量随时间则表现为对数函数,成土母质的差异是造成两地区碳储量不同时间演变函数的主要原因之一;3)滨海耕地土壤有机碳与土壤理化属性具有显著相关性。两个采样地区相比,射阳地区的土壤有机碳与体积质量、全盐量的相关系数更高,而东台地区的有机碳与土壤质地的相关系数更高。该研究可为理解滨海耕地土壤碳库的动态特征和长期储存机制提供重要参考。

    Abstract:

    The coastal zone serves as a critical interface for the fixation and storage of organic carbon at the land-sea boundary, exhibiting significant spatiotemporal characteristics and patterns in organic carbon formation over millennia of cultivated soil development. This study aimed to analyze the vertical distribution characteristics and temporal evolution patterns of soil organic carbon (SOC) of sandy-silty coastal zones of the South Yellow Sea over millennia. Twenty one-meter-deep soil profiles were collected based on the position of the coastlines from Sheyang in the north and Dongtai in the middle of the study area. The spatiotemporal distribution characteristics of SOC mass fraction (SOCC), density (SOCD), and stock (SOCS) were analyzed, along with their correlation with soil physicochemical properties. Results indicated: 1) Over millennia, SOCC in coastal cultivated soil profiles ranged from 1.00 to 24.44 g·kg-1, while SOCD varied within 0.13-2.78 g·m-2, with both SOCC and SOCD decreasing with depth in the two regions. 2) The temporal accumulation functions of SOCS differed between the two regions, with SOCS in Sheyang showing a linear relationship with soil age, while in Dongtai, SOCS exhibited a logarithmic function, primarily due to differences in soil texture. 3) Significant correlations were found between coastal cultivated SOC and soil physicochemical properties, with Sheyang showing higher correlations between SOC and bulk density, total salinity, whereas Dongtai exhibited higher correlations with soil texture. This study provides important insights into the dynamic characteristics and long-term storage mechanisms of coastal cultivated soil carbon pools, offering valuable references for understanding these systems.

    参考文献
    [1] Yang P, Shu Q, Liu Q, et al. Distribution and factors influencing organic and inorganic carbon in surface sediments of tidal flats in northern Jiangsu, China[J]. Ecological Indicators, 2021, 126: 107633.
    [2] Lal R. Carbon sequestration[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 363(1492): 815-830.
    [3] Wang X, Pu L, Zhang M, et al. Spatial and temporal variations of soil organic carbon and total nitrogen pools in the coastal reclamation area, eastern China[J]. Environmental Earth Sciences, 2015, 74(6): 4763-4769.
    [4] Chen D, Chang N, Xiao J, et al. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms[J]. Science of The Total Environment, 2019, 669: 844-855.
    [5] 韩广轩, 王法明, 马俊, 等. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4): 373-382.HAN Guang-Xuan, WANG Fa-Ming, MA Jun, et al. Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes[J]. Chinese Journal of Plant Ecology, 2022, 46(4): 373-382.
    [6] Kirwan M L, Megonigal J P, Noyce G L, et al. Geomorphic and ecological constraints on the coastal carbon sink[J]. Nature Reviews Earth Environment, 2023, 4(6): 393-406.
    [7] Wang M, Guo X, Zhang S, et al. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate[J]. Nature Communications, 2022, 13(1): 5514.
    [8] 彭修强, 闫玉茹, 孙祝友, 等. 江苏盐城滨海盐沼湿地沉积物有机碳含量及碳储量研究[J]. 海洋通报, 2023, 42(04): 407-417.PENG Xiu Qiang, RUN Yu Ru, SUN Zhu You, et al. Sediment organic carbon content and its storage in Yancheng coastal salt marshes of Jiangsu Province[J]. Marine Science Bulletin, 2023, 42(04): 407-417.
    [9] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 2014, 65(1): 10-21.
    [10] Johnson J M F, Franzluebbers A J, Weyers S L, et al. Agricultural opportunities to mitigate greenhouse gas emissions[J]. Environmental Pollution, 2007, 150(1): 107-124.
    [11] Sierra C A, Ahrens B, Bolinder M A, et al. Carbon sequestration in the subsoil and the time required to stabilize carbon for climate change mitigation[J]. Global Change Biology, 2024, 30(1): e17153.
    [12] Bai J, Zhang G, Zhao Q, et al. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers[J]. Scientific Reports, 2016, 6(1): 34835.
    [13] Xu L, Yu G, He N, et al. Carbon storage in China’s terrestrial ecosystems: A synthesis[J]. Scientific Reports, 2018, 8(1): 2806.
    [14] Lin Y, Hu Z, Li W, et al. Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China[J]. Journal of Arid Land, 2024, 16(1): 110-130.
    [15] 李建国, 袁冯伟, 赵冬萍, 等. 滨海滩涂土壤有机碳演变驱动因子框架[J]. 地理科学, 2018, 38(04): 580-589.Li Jianguo, Yuan Fengwei, Zhao Dongping, et al. Driving Factors Framework of Soil Organic Carbon Evolution in Coastal Wetlands[J]. Scientia Geographica Sinica, 2018, 38(4): 580-589.
    [16] 訾园园, 郗敏, 孔范龙, 等. 胶州湾滨海湿地土壤有机碳时空分布及储量[J]. 应用生态学报, 2016, 27(07): 2075-2083.ZI Yuan-yuan, XI Min, KONG Fan-long, et al. Temporal and spatial distribution of soil organic carbon and its storage in the coastal wetlands of Jiaozhou Bay, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2075-2083.
    [17] Jiao C, Zheng G, Xie X, et al. Rate of soil organic carbon sequestration in a millennium coastal soil chronosequence in northern Jiangsu, China[J]. CATENA, 2020, 193: 104627.
    [18] Zhang R S. Land-forming history of the huanghe river delta and coastal plain of north jiangsu[J]. Acta Geographica Sinica, 1984, 39(2): 173-184.
    [19] Zheng G, Ryu D, Jiao C, et al. Visible and Near-Infrared Reflectance Spectroscopy Analysis of a Coastal Soil Chronosequence [J] 2019, 11(20):10.3390/rs11202336
    [20] 王会利, 王绍能, 宋贤冲, 等. 广西猫儿山水青冈林土壤剖面有机碳垂直分布特征及影响因素[J]. 中南林业科技大学学报, 2018, 38(11): 89-94+122.WANG Hui-li, WANG Shao-neng, SONG Xian-chong, et al. Vertical distribution of soil organic carbon and its infuence factors of Fagus longipetiolata forest in Mao’ermountain, Guangxi[J]. Journal of Central South University of Forestry Technology, 2018, 38(11): 89-94+122.
    [21] Minasny B, Stockmann U, Hartemink A E, et al. Measuring and Modelling Soil Depth Functions [M]//Hartemink A E, Minasny B. Digital Soil Morphometrics. Cham; Springer International Publishing. 2016: 225-240.
    [22] 刘占锋, 傅伯杰, 刘国华, 等. 土壤质量与土壤质量指标及其评价[J]. 生态学报, 2006, (03): 901-913.LIU Zhan-Feng, FU Bo-Jie, LIU Guo-Hua, et al. Soil quality: concept, indicators and its assessment[J]. ACTA ECOLOGICA SINICA, 2006, (03): 901-913.
    [23] Aka Sagliker H, Cenkseven S, Kizildag N, et al. Is parent material an important factor in soil carbon and nitrogen mineralization?[J]. European Journal of Soil Biology, 2018, 89: 45-50.
    [24] 安立伟, 李志刚. 退化荒漠草地恢复对土壤有机碳及其驱动因子的影响[J]. 生态学报, 2024, (13): 1-13.AN Liwei, LI Zhigang. The effects of degraded desert grassland restoration on soil organic carbon and its driving factors[J]. ACTA ECOLOGICA SINICA, 2024, (13): 1-13.
    [25] Zhao Y G, Liu X F, Wang Z L, et al. Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China[J]. CATENA, 2015, 133: 303-308.
    [26] Huang X, Tang G, Zhu T, et al. Space-for-time substitution in geomorphology[J]. Journal of Geographical Sciences, 2019, 29(10): 1670-1680.
    [27] Crowther T W, Todd-Brown K E O, Rowe C W, et al. Quantifying global soil carbon losses in response to warming[J]. Nature, 2016, 540(7631): 104-108.
    [28] Liu X, Tang D, Ge C. Distribution and sources of organic carbon, nitrogen and their isotopic composition in surface sediments from the southern Yellow Sea, China[J]. Marine Pollution Bulletin, 2020, 150: 110716.
    [29] Matus F J. Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis[J]. Scientific Reports, 2021, 11(1): 6438.
    [30] Gu F, Chen X J, Su Z A, et al. Variation of soil organic carbon and bulk density during afforestation regulates soil hydraulic properties[J]. Journal of Mountain Science, 2022, 19(8): 2322-2332.
    [31] Trivedi P, Singh B P, Singh B K. Chapter 1 - Soil Carbon: Introduction, Importance, Status, Threat, and Mitigation [M]//Singh B K. Soil Carbon Storage. Academic Press. 2018: 1-28.
    [32] Zhang N, Chen X, Wang J, et al. Anthropogenic soil management performs an important role in increasing soil organic carbon content in northeastern China: A meta-analysis[J]. Agriculture, Ecosystems Environment, 2023, 350: 108481.
    [33] 王清奎, 汪思龙, 冯宗炜, 等. 土壤活性有机质及其与土壤质量的关系[J]. 生态学报, 2005, (03): 513-519.WANG Qingkui, WANG Silong, FENG Zongwei, et al. Active soil organic matter and its relationship with soil quality[J]. ACTA ECOLOGICA SINICA, 2005, (03): 513-519.
    [34] 张维理, Kolbeh, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 15.ZHANG WeiLi, KOLBE H, ZHANG RenLian. Research Progress of SOC Functions andTransformation Mechanisms[J]. Scientia Agricultura Sinica, 2020, 53(2): 15.
    [35] 王华, 王建华, 潘玉雯, 等. 东台市滨海湿地围垦影响的定量评估[J]. 江苏林业科技, 2018, 45(05): 39-43.Wang Hua, Wang Jianhua, Pan Yuwen, et al. Quantitative evaluation of the influence of coastal wetland reclamation in Dongtai City[J]. Journal of Jiangsu Forestry Science Technology, 2018, 45(05): 39-43.
    [36] 冉敏, 宋靓颖, 薛晶玲, 等. 成都平原成土母质和农地利用方式对土壤剖面氮素分布的影响[J]. 生态与农村环境学报, 2024, 40(03): 398-407.RAN Min, SONG Liang-ying, XUE Jing-ling, et al. Effects of Soil Parent Material and Farmland Utilization on Nitrogen Distribution in Soil Profile in Chengdu Plain[J]. Journal of Ecology and Rural Environment, 2024, 40(03): 398-407.
    相似文献
    引证文献
引用本文

丁煜,赵成义,郑光辉.千年时序滨海耕地土壤有机碳的演变特征分析[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:97
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-10
  • 最后修改日期:2024-06-12
  • 录用日期:2024-06-12

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司