具有注意力机制的CNN-GRU模型在风电机组异常状态预警中的应用
DOI:
作者:
作者单位:

华北电力大学

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省中央引导地方科技发展资金项目(226Z2103G)


Application of CNN-GRU model with attention mechanism in anomaly warning of wind turbines
Author:
Affiliation:

Department of Automation,North China Electric Power University

Fund Project:

Hebei Provincial Central Guide Local Science and Technology Development Fund Project

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种基于具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法。首先结合快速密度峰值聚类(CFSFDP)和局部离群因子(LOF)算法对风电机组状态监控与数据采集系统(SCADA)中的异常数据进行预处理,然后根据极端梯度提升(XGBoost)算法评估特征重要性选取模型输入输出参数,输入到CNN-GRU-Attention模型中进行训练和预测,建立风电机组正常运行工况预测模型。以该模型为基础,利用时移滑动窗口建立风电机组状态评价指标,结合统计学中的区间估计法确定预警上限阈值以实现异常工况预警,最后应用某风场真实历史故障数据进行实验。实验结果表明,CNN-GRU-Attention模型能够有效的对机组异常工况进行提前识别并预警,以确保风电机组的稳定运行。

    Abstract:

    Aiming at the problem of frequent failures for the wind turbines working in harsh environment for a long time, an anomaly warning method with convolutional neural network (CNN) and gate recurrent unit (GRU) with attention mechanism is proposed. Firstly, the clustering fast search and find of density peaks (CFSFDP) algorithm and the local outlier factor (LOF) algorithm are jointly employed to preprocess the abnormal data in the wind turbine condition supervisory control and data acquisition (SCADA) system. Then the input and output parameters of the model are selected by evaluating the feature importances with the extreme gradient boosting (XGBoost) algorithm. The selected parameters are then input into the CNN-GRU-Attention model for training and prediction to establish the prediction model of the wind turbine under normal operation conditions. Based on this model, the state evaluation index of wind turbine is established by using the time-lapse sliding window, and the upper warning threshold is determined by the interval estimation method in statistics to realize the abnormal condition early warning. Finally, fault warning experiments are carried out with the real historical fault data of a wind power unit, which show that the CNN-GRU-Attention model can effectively identify and warn the abnormal working conditions in advance to ensure the stable operation of the wind turbine.

    参考文献
    相似文献
    引证文献
引用本文

马良玉,胡景琛,段晓冲,黄日灏.具有注意力机制的CNN-GRU模型在风电机组异常状态预警中的应用[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-09
  • 最后修改日期:2024-06-08
  • 录用日期:2024-06-14
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司