基于SCADA图像数据增强的风机叶片结冰检测
DOI:
作者:
作者单位:

1.上海海事大学;2.国电南京自动化股份有限公司;3.南京信息工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省‘青蓝工程’


Detection of icing on wind turbine blades based on the enhancement of SCADA image data
Author:
Affiliation:

1.Shanghai Maritime University;2.Guodian Nanjing Automation Co., Ltd, Nanjing;3.Nanjing University of Information Science and Technology

Fund Project:

Qing Lan Project of Jiangsu Province

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着电力产业的迅猛发展,发电机组状态的监测受到了广泛关注。为有效检测风电机组叶片是否结冰,本文提出一种基于SCADA(Supervisory Control and Data Acquisition)图像数据增强的风机叶片结冰检测方法。首先,本文对原始特征进行重构,并综合考虑数据相关性和特征重要性来筛选特征,随后,将SCADA数据转化为二维图像形式,以适配二维神经网络模型的输入需求,在此基础上,采用经过优化的CycleGAN算法生成更具适应性的图像数据,旨在解决数据类别不平衡的问题,同时提高模型的泛化能力。本文选取WT15数据作为训练集,WT21数据作为测试集。实验结果表明,与采用XGBoost模型进行特征选择相比,本文所提出的特征选择方法使得模型的准确率提高了4.79个百分点,F1分数提升了2.64个百分点,与原始CycleGAN模型相比,改进后的模型准确率提高了6.78个百分点,F1分数提升了6.91个百分点,本文提出的方法在提高模型准确率和泛化能力方面具有显著优势。

    Abstract:

    With the rapid development of the power industry, the monitoring of the state of power generation units has garnered widespread attention. In order to effectively detect whether wind turbine blades are iced, this paper proposes a wind turbine blade icing detection method based on SCADA (Supervisory Control and Data Acquisition) image data enhancement. The method initially reconstructs features based on the mechanism of icing, considering both data relevance and feature importance for feature selection. Subsequently, SCADA data is transformed into a two-dimensional image format to meet the input requirements of two-dimensional neural network models. On this basis, an optimized CycleGAN algorithm is used to generate more adaptable image data, aiming to address the issue of data category imbalance and significantly enhance the generalization ability of the model. This study selected WT15 data as the training set and WT21 data as the test set. The experimental results demonstrate that the feature selection method proposed in this paper leads to an increase of 4.79 percentage points in model accuracy and 2.64 percentage points in F1 score, compared to feature selection using the XGBoost model. In comparison to the original CycleGAN model, the improved model achieved an increase in accuracy of 6.78 percentage points and an improvement in the F1 score of 6.91 percentage points. These findings indicate that the method proposed in this paper offers a significant advantage in improving the model's accuracy and generalisation ability.

    参考文献
    相似文献
    引证文献
引用本文

王昊,姚刚,卢应强,葛泉波.基于SCADA图像数据增强的风机叶片结冰检测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-08
  • 最后修改日期:2024-06-11
  • 录用日期:2024-06-11
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司