基于蚁群-动态窗口法的无人驾驶汽车动态路径规划
DOI:
作者:
作者单位:

1.南京林业大学汽车与交通工程学院;2.南京财经大学营销与物流管理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(71871111),国家自然科学基金项目(面上项目,重点项目,重大项目)


Dynamic path planning for autonomous vehicles based on ant colony-dynamic window approach
Author:
Affiliation:

1.College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, China;2.School of Marketing and Logistic Management, Nanjing University of Finance and Economics,Nanjing,China;3.College of automobile and traffic engineering, Nanjing Forestry University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自动驾驶技术能够提高出行安全和缩短出行时间,其中制定合理的路径规划更是直接影响无人驾驶汽车的安全性和乘坐舒适性。针对传统路径规划算法在无人驾驶汽车应用中搜索效率低、不符合车辆运动学约束的问题进行改进,将动态窗口法的局部目标点用改进蚁群算法路径规划的关键节点代替,并在动态窗口法评价函数中加入目标距离评价子函数,提高路径规划的效率和平滑性,同时采用路径再规划方法解决全局路径失效问题,使车辆摆脱障碍困境,满足路径规划的安全性的要求。改进后的蚁群算法利用起止点的位置信息使初始信息素分布不均匀,减少搜索初期阶段的时间消耗;通过维护全局最优路径和强化优秀局部路径的信息素浓度,优化信息素更新机制,加快路径探索效率;对规划路径进行二次优化,优化节点和转折点冗余,减少路径长度。仿真结果表明,相比于传统路径规划算法,本文提出的融合算法规划出的路径在距离、平滑度和收敛性方面都具有更好的表现,且符合无人驾驶汽车安全行驶的要求。

    Abstract:

    Autonomous driving technology can improve travel safety and shorten travel time. Reasonable route planning directly affects the safety and comfort of autonomous vehicles. To address the issues of low search efficiency and non-compliance with vehicle kinematic constraints in traditional route planning algorithms for autonomous vehicles, improvements have been made. By replacing the local target points of the dynamic window method with key nodes of the improved ant colony algorithm for route planning, and adding a target distance evaluation sub-function to the evaluation function of the dynamic window method, the efficiency and smoothness of route planning are improved. Additionally, a path replanning method is used to address global path failure, allowing vehicles to escape obstacles and meet safety requirements for route planning. The improved ant colony algorithm uses the location information of start and end points to distribute initial pheromones unevenly, reducing time consumption in the initial search phase. By maintaining the global optimal path and increasing the concentration of pheromones on excellent local paths, the information update mechanism is optimized to accelerate path exploration efficiency. Secondary optimization of planned paths reduces redundancy in nodes and turning points, thus reducing path length. Simulation results show that the integrated algorithm proposed in this paper provides better performance in terms of distance, smoothness, and convergence compared to traditional route planning algorithms, and meets the requirements for safe driving of autonomous vehicles.

    参考文献
    相似文献
    引证文献
引用本文

郑琰,席宽,巴文婷,肖玉杰,余伟.基于蚁群-动态窗口法的无人驾驶汽车动态路径规划[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-06
  • 最后修改日期:2024-07-15
  • 录用日期:2024-07-16
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司