基于蚁群-动态窗口法的无人驾驶汽车动态路径规划
作者:
作者单位:

1.南京林业大学汽车与交通工程学院;2.南京财经大学营销与物流管理学院

基金项目:

国家自然科学基金(71871111),国家自然科学基金项目(面上项目,重点项目,重大项目)


Dynamic path planning for autonomous vehicles based on ant colony-dynamic window approach
Author:
Affiliation:

1.College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, China;2.School of Marketing and Logistic Management, Nanjing University of Finance and Economics,Nanjing,China;3.College of automobile and traffic engineering, Nanjing Forestry University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    自动驾驶技术能够提高出行安全和缩短出行时间,其中制定合理的路径规划更是直接影响无人驾驶汽车的安全性和乘坐舒适性。针对传统路径规划算法在无人驾驶汽车应用中搜索效率低、不符合车辆运动学约束的问题进行改进,将动态窗口法的局部目标点用改进蚁群算法路径规划的关键节点代替,并在动态窗口法评价函数中加入目标距离评价子函数,提高路径规划的效率和平滑性,同时采用路径再规划方法解决全局路径失效问题,使车辆摆脱障碍困境,满足路径规划的安全性的要求。改进后的蚁群算法利用起止点的位置信息使初始信息素分布不均匀,减少搜索初期阶段的时间消耗;通过维护全局最优路径和强化优秀局部路径的信息素浓度,优化信息素更新机制,加快路径探索效率;对规划路径进行二次优化,优化节点和转折点冗余,减少路径长度。仿真结果表明,相比于传统路径规划算法,本文提出的融合算法规划出的路径在距离、平滑度和收敛性方面都具有更好的表现,且符合无人驾驶汽车安全行驶的要求。

    Abstract:

    Autonomous driving technology can improve travel safety and shorten travel time. Reasonable route planning directly affects the safety and comfort of autonomous vehicles. To address the issues of low search efficiency and non-compliance with vehicle kinematic constraints in traditional route planning algorithms for autonomous vehicles, improvements have been made. By replacing the local target points of the dynamic window method with key nodes of the improved ant colony algorithm for route planning, and adding a target distance evaluation sub-function to the evaluation function of the dynamic window method, the efficiency and smoothness of route planning are improved. Additionally, a path replanning method is used to address global path failure, allowing vehicles to escape obstacles and meet safety requirements for route planning. The improved ant colony algorithm uses the location information of start and end points to distribute initial pheromones unevenly, reducing time consumption in the initial search phase. By maintaining the global optimal path and increasing the concentration of pheromones on excellent local paths, the information update mechanism is optimized to accelerate path exploration efficiency. Secondary optimization of planned paths reduces redundancy in nodes and turning points, thus reducing path length. Simulation results show that the integrated algorithm proposed in this paper provides better performance in terms of distance, smoothness, and convergence compared to traditional route planning algorithms, and meets the requirements for safe driving of autonomous vehicles.

    参考文献
    [1] 熊璐,杨兴,卓桂荣,等. 无人驾驶车辆的运动控制发展现状综述[J].机械工程学报,2020,56(10):127-143.XIONG Lu, YANG Xing, ZHUO Guirong, et al. Overview of the current development of motion control for unmanned vehicles[J]. Journal of Mechanical Engineering, 2020, 56(10): 127-143.
    [2] 赵奉奎,葛振,董锋威,等. 基于改进人工势场法的智能汽车轨迹规划算法研究[J].重庆交通大学学报(自然科学版),2022,41(11):153-160.ZHAO Fengkui, GE Zhen, DONG Fengwei, et al. Research on intelligent car trajectory planning algorithm based on improved artificial potential field method[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2022, 41(11): 153-160.
    [3] 陶重犇,雷祝兵,李春光,等. 基于改进模拟退火算法的搬运机器人路径规划[J].计算机测量与控制,2018,26(07):182-185.TAO Zhongben, LEI Zhubing, LI Chunguang, et al. Path planning of transfer robot based on improved simulated annealing algorithm[J]. Computer Measurement Control, 2018, 26(07): 182-185.
    [4] Yangyang Shi et al. Research on Intelligent Vehicle Path Planning Based on Rapidly- Exploring Random Tree [J]. Mathematical Problems in Engineering, 2020, 4(12): 526-528.
    [5] 张松灿, 普杰信, 司彦娜, 等. 蚁群算法在移动机器人路径规划中的应用综述[J].计算机工程与应用, 2020, 56(8): 10-19.ZHANG Songcan, PU Jiexin, SI Yanna, et al. A comprehensive review of the application of ant colony algorithm in mobile robot path planning[J]. Computer Engineering and Applications, 2020, 56(8): 10-19.
    [6] Steinbrunn M, Moerkotte G, Kemper A. Heuristic and randomized optimization for the join ordering problem[J]. The VLDB Journal, 1997, 6(3): 191-208.
    [7] Grefenstette J J. Genetic algorithms and machine learning[C]//Proceedings of the sixth annual conference on Computational learning theory. 1993,3-4.
    [8] Changwei M ,Guangzhu C ,Chengliang Y , et al.Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J].Computers Industrial Engineering,2021,156.
    [9] 唐传茵,章明理,李静红,等.基于改进蚁群算法的外卖配送路径规划研究[J].南京信息工程大学学报,2024,16(02):145-154.TANG Chuanyin, ZHANG Mingli, LI Jinghong, et al. Research on food delivery route planning based on improved ant colony algorithm[J]. Journal of Nanjing University of Information Engineering, 2024, 16(02): 145-154.
    [10] 王倩,杨立炜,李俊丽,等.蚁群融合动态窗口法的分布式多机器人运动规划研究[J].重庆邮电大学学报(自然科学版),2024,36(01):20-28.WANG Qian, YANG Liwei, LI Junli, et al. Research on distributed multi-robot motion planning based on ant colony fusion dynamic window method[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2024, 36(01): 20-28.
    [11] 蔡军,钟志远.改进蚁群算法的送餐机器人路径规划[J].智能系统学报,2024,19(02):370-380.CAI Jun, ZHONG Zhiyuan. Improved ant colony algorithm for meal delivery robot path planning[J]. Journal of Intelligent Systems, 2024, 19(02): 370-380.
    [12] 巫茜,黄浩,曾青,等.改进ACO算法的UAV航迹规划在山区物流配送中的应用研究[J].重庆理工大学学报(自然科学),2022,36(10):185-191.WU Qian, HUANG Hao, ZENG Qing, et al. Application research of improved ACO algorithm for UAV trajectory planning in mountainous logistics distribution[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2022, 36(10): 185-191.
    [13] Fatemidokht H ,Rafsanjani K M .F-Ant: an effective routing protocol for ant colony optimization based on fuzzy logic in vehicular ad hoc networks[J].Neural Computing and Applications,2018,29(11):1127-1137.
    [14] 王鹤静,王丽娜.机器人路径规划算法综述[J].桂林理工大学学报,2023,43(01):137-147.WANG Hejing, WANG Lina. A review of robot path planning algorithms[J]. Journal of Guilin University of Technology, 2023, 43(01): 137-147.
    [15] 曹新亮,王智文,冯晶,等. 基于改进蚁群算法的机器人全局路径规划研究[J]. 计算机工程与科学, 2020, 42(03):564-570.CAO Xinliang, WANG Zhiwen, FENG Jing, et al. Research on robot global path planning based on improved ant colony algorithm[J]. Computer Engineering and Science, 2020, 42(03): 564-570.
    [16] 张琳, 章新杰, 郭孔辉, 王超, 刘洋,刘涛. 未知环境下智能汽车轨迹规划滚动窗口优化[J]. 吉林大学学报(工学版), 2018, 48(03):652-660.ZHANG Lin, ZHANG Xinjie, GUO Konghui, Wang Chao, Liu Yang, Liu Tao. Rolling window optimization of intelligent car trajectory planning in unknown environments[J]. Journal of Jilin University (Engineering Edition), 2018, 48(03): 652-660.
    [17] 牛龙辉,季野彪.基于改进蚁群算法的机器人路径规划问题研究[J].微处理机,2020,41(01):37-40.NIU Longhui, JI Yebiao. Research on robot path planning problem based on improved ant colony algorithm[J]. Microprocessors, 2020, 41(01): 37-40.
    [18] 银长伟.基于萤火虫算法和动态窗口法的移动机器人混合路径规划[D].重庆大学,2018.YIN Changwei. Hybrid path planning of mobile robots based on firefly algorithm and dynamic window approach[D]. Chongqing University, 2018.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑琰,席宽,巴文婷,肖玉杰,余伟.基于蚁群-动态窗口法的无人驾驶汽车动态路径规划[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:61
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-06
  • 最后修改日期:2024-07-15
  • 录用日期:2024-07-16

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司