改进生成式固定滤波器变电站噪声有源控制
DOI:
作者:
作者单位:

国网江苏省电力有限公司无锡供电分公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Enhanced Generative Fixed-Filters for Active Control of Substation Noise
Author:
Affiliation:

Wuxi Power Supply Company of State Grid Jiangsu Electric Power Co., Ltd.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    考虑到变电站噪声的频谱特点,为了改进自适应算法存在收敛速度慢、跟踪能力弱和运算量大的局限性,研究了一种改进生成式固定滤波器有源噪声控制(Enhanced Generative Fixed-Filter Active Noise Control, EGFANC)方法。采用轻量级的一维卷积神经网络(1-Dimensional Convolutional Neural Network, 1D CNN)根据噪声帧信息输出权重向量后与子控制滤波器组合,以自适应地生成适用于各种噪声的控制滤波器。仿真结果表明,EGFANC方法在处理动态噪声和变压器谐波噪声时具有更好的降噪性能和鲁棒性,同时,EGFANC为不同类型噪声选择适当的预训练控制滤波器,可以显著减少收敛时间。

    Abstract:

    Considering the spectral characteristics of substation noise, an enhanced generative fixed filter active noise control (Enhanced Generative Fixed Filter Active Noise Control, EGFANC) method was introduced to improve the limitations of adaptive algorithms such as slow convergence speed, weak tracking ability, and large computational complexity. A lightweight one-dimensional convolutional neural network (1D CNN) was used to output the weight vector based on noise frame information, then the weight vector was combined with sub control filters to adaptively generate suitable control filters for various types of noise. The simulation results show that the EGFANC method has better noise reduction performance and robustness in dealing with dynamic noise and transformer harmonic noise. In addition, EGFANC can significantly reduce convergence time by selecting appropriate pre trained control filters for different types of noise.

    参考文献
    相似文献
    引证文献
引用本文

费彬,沈海平,阙云飞,从乐瑶,蒋逸文.改进生成式固定滤波器变电站噪声有源控制[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-05
  • 最后修改日期:2024-09-02
  • 录用日期:2024-09-03
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司