基于深度强化学习的综合能源系统低碳经济调度
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73;TK01

基金项目:

国家自然科学基金(62076160);上海市自然科学基金(21ZR1424700);上海市"科技创新行动计划"启明星项目(23QA1403800)


Low-carbon economic dispatch of integrated energy system based on deep reinforcement learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    综合能源系统(IES)能够实现多种能源形式的供应,但同时排放的大量CO2也影响着周边环境.针对综合能源系统的低碳经济调度问题,本文提出一种基于双延迟深度确定性策略梯度(TD3)算法的优化调度策略.首先,以调度运行成本最小为目标函数,建立考虑碳捕集技术和电转气技术的包含电、热、冷多能互补的综合能源系统模型;其次,引入碳交易机制,提高优化调度策略节能减排的积极性;然后,根据强化学习框架设计优化模型的状态空间、动作空间和奖励函数等,利用TD3算法中的智能体与环境互动,学习综合能源系统的运行策略;最后,利用历史数据对TD3算法的智能体进行训练,并对比线性规划和粒子群算法在不同场景下进行算例分析.结果表明,本文所提方法可以减少综合能源系统运行时的碳排放和运行成本,能够实现综合能源系统的低碳经济调度.

    Abstract:

    Integrated energy system (IES) enables the supply of multiple forms of energy,but the large amount of carbon dioxide it emitted affects the surrounding environment.Here,an optimal scheduling approach based on Twin Delayed Deep Deterministic Policy Gradient (TD3) is proposed for low-carbon economic scheduling of IES.First,taking the minimum operation cost as the objective function,an IES model with multiple complementary energies of electricity,heat and cold is established considering carbon capture technology and power-to-gas technology.Second,a carbon trading mechanism is introduced to stimulate the enthusiasm of energy conservation and emission reduction under optimal scheduling.Then,according to the reinforcement learning framework,the state space,action space and reward function of the optimization model are designed,and the agents in the TD3 algorithm are used to interact with the environment to explore strategies and learn the IES operation strategies.Finally,the historical data are used to train the agents of TD3 algorithm,and the linear programming and particle swarm optimization are compared under different scenarios.The results show that the proposed approach can reduce the IES carbon emission and operating cost,thus realizing the low-carbon economic dispatch of the integrated energy system.

    参考文献
    相似文献
    引证文献
引用本文

崔在兴,应雨龙,李靖超,王新友.基于深度强化学习的综合能源系统低碳经济调度[J].南京信息工程大学学报(自然科学版),2024,16(5):599-607
CUI Zaixing, YING Yulong, LI Jingchao, WANG Xinyou. Low-carbon economic dispatch of integrated energy system based on deep reinforcement learning[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(5):599-607

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-30
  • 出版日期: 2024-09-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司