基于WOA-LQR的智能车辆路径跟踪控制
DOI:
作者:
作者单位:

1.南京林业大学汽车与交通工程学院;2.江苏省特种设备安全监督检验研究院吴江院,苏州

作者简介:

通讯作者:

中图分类号:

U463.6

基金项目:

江苏省产业前瞻与关键核心技术项目(BE2022053-2)


Intelligent vehicle path tracking control based on WOA-LQR
Author:
Affiliation:

1.School of Automotive and Traffic Engineering,Nanjing Forestry University;2.Wujiang Branch, Jiangsu Institute of Special Equipment Safety Supervision and Inspection,Suzhou

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人驾驶车辆在特殊行驶工况(冰雪路面、雨天路面、高速换道)下路径跟踪控制精度差的问题,本文设计了一种基于鲸鱼优化算法(WOA,Whale Optimization Algorithm)的LQR控制器(WOA-LQR)。首先,基于二自由度车辆动力学模型建立了跟踪误差模型,以此为基础设计了离散LQR控制器,并采用前馈控制消除由于系统简化带来的误差。同时,为解决固定权重系数下的LQR控制器对特殊行驶工况适应性差导致跟踪精度低、车辆失稳的问题,在以横向误差、航向角误差作为评价指标的基础上,考虑了车辆侧向加速度和前轮转角对车辆维持稳定的影响,并对评价指标设定相应的权重系数,设计了目标值最小的适应度函数,以此提出了基于鲸鱼算法优化的LQR自适应权重系数调节策略。最后,通过Carsim/Simulink 联合仿真对WOA-LQR控制器在不同工况下进行路径跟踪仿真实验。结果表明:本文提出的控制策略在复杂行驶工况下有着良好的跟踪效果,显著提升了车辆在路径跟踪过程中的控制精度,具有较强的鲁棒性。

    Abstract:

    The paper addresses the issue of poor path-tracking control accuracy in autonomous vehicles under special driving conditions (such as icy and snowy roads, rainy surfaces, and high-speed lane changes). A Linear Quadratic Regulator (LQR) controller based on the Whale Optimization Algorithm (WOA), referred to as the WOA-LQR controller, is designed to tackle this problem. Initially, a tracking error model is established based on a two-degree-of-freedom vehicle dynamics model, and a discrete LQR controller is designed on this basis. Feedforward control is employed to eliminate errors caused by system simplification. To address the problem of low tracking accuracy and vehicle instability under special driving conditions due to the poor adaptability of the LQR controller with fixed weight coefficients, an adaptive weight adjustment strategy for the LQR controller is proposed based on WOA. This strategy takes into account the influence of lateral acceleration and front wheel steering angle on vehicle stability and sets corresponding weight coefficients for the evaluation indices, which include lateral error and yaw angle error. A fitness function with the minimum target value is designed to optimize the LQR weight coefficients using WOA. Finally, the WOA-LQR controller is validated through path-tracking simulations under various conditions using Carsim/Simulink co-simulation. The results demonstrate that the proposed control strategy provides excellent tracking performance under complex driving conditions, significantly improves the control accuracy during path tracking, and exhibits strong robustness.

    参考文献
    相似文献
    引证文献
引用本文

张闯,赵奉奎,张涌,张伟.基于WOA-LQR的智能车辆路径跟踪控制[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-28
  • 最后修改日期:2024-09-24
  • 录用日期:2024-09-25
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司