基于风险场和多项式的智能车换道轨迹规划
DOI:
作者:
作者单位:

太原科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省基础研究计划(20210302123212)


Smart car based on risk field and polynomial lane changing trajectory planning
Author:
Affiliation:

Taiyuan University of Science and Technology

Fund Project:

Basic Research Project of Shanxi Province ( 20210302123212 )

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对智能车在高速路换道场景中的安全性及舒适性问题,提出一种基于安全势场和多项式换道模型的轨迹规划方法。首先,将车辆的运动在Frenet坐标系中解耦为横向与纵向两个维度,采用五次多项式与四次多项式分别生成车辆的横向d-t轨迹簇与纵向s-t轨迹簇;其次,为提升算法效率,根据车辆动力学特性设计了包含加速度、加速度变化率和曲率的轨迹评价指标,对轨迹簇进行初筛后得到候选轨迹;最后,基于安全势场理论结合行车最小安全距离的概念建立包含安全性、舒适性以及效率的轨迹评价函数对候选轨迹筛选出最优轨迹并完成仿真验证。通过搭建高速双车道弯道模型并设计匀速车流和变速车流的不同换道场景对该算法进行仿真验证,结果表明:在换道过程中,自车与各障碍车之间的碰撞风险值始终小于碰撞风险临界值,保证了换道的安全性;在不同行驶工况下,自车的加速度、加速度变化率以及轨迹曲率均小于阈值,表明该换道轨迹规划算法在多种障碍车流中均能保证自车换道的舒适性与换道轨迹的平滑性。

    Abstract:

    Aiming at the safety and comfort problems of intelligent vehicles in highway lane-changing scenarios, a trajectory planning method based on safety potential field and polynomial lane-changing model is proposed. Firstly, the motion of the vehicle is decoupled into horizontal and vertical dimensions in the Frenet coordinate system, and the horizontal d-t trajectory cluster and the longitudinal s-t trajectory cluster of the vehicle are generated by the fifth-order polynomial and the fourth-order polynomial. Secondly, in order to improve the efficiency of the algorithm, a trajectory evaluation index including acceleration, acceleration change rate and curvature is designed according to the vehicle dynamics characteristics, and the candidate trajectory is obtained after the initial screening of the trajectory cluster. Finally, based on the safety potential field theory and the concept of minimum driving safety distance, a trajectory evaluation function including safety, comfort and efficiency is established to select the optimal trajectory for the candidate trajectory and complete the simulation verification. The algorithm is simulated and verified by building a high-speed two-lane curve model and designing different lane changing scenarios of uniform traffic flow and variable-speed traffic flow. The results show that in the process of lane changing, the collision risk value between the self-vehicle and each obstacle vehicle is always less than the critical value of collision risk, which ensures the safety of lane changing. Under different driving conditions, the acceleration, acceleration change rate and trajectory curvature of the self-driving car are all less than the threshold, indicating that the lane change trajectory planning algorithm can ensure the comfort and smoothness of the lane change trajectory of the self-driving car in a variety of obstacle traffic flows.

    参考文献
    相似文献
    引证文献
引用本文

安政吉,范小宁.基于风险场和多项式的智能车换道轨迹规划[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-24
  • 最后修改日期:2024-06-07
  • 录用日期:2024-06-11
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司