基于混合A星算法的移动机器人路径规划研究
DOI:
作者:
作者单位:

东北林业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

黑龙江省自然科学基金资助项目(LH2021F002)


Research on path planning of mobile robot based on hybrid A-star algorithm
Author:
Affiliation:

NEFU

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对混合A*算法规划的路径不够平滑且效率低的问题,提出优化混合A*算法的评价函数,引入角度惩罚系数的方法,使路径更加平滑,并引入最优步长的节点扩展方法以提高搜索效率。首先,将混合A*算法与TEB(Timed Elastic Band,时间弹性带)算法结合,生成混合路径规划算法。然后,基于ROS(Robot Operating System,机器人操作系统)对阿克曼转向机器人的路径规划过程进行仿真。结果表明:使用混合A*算法和DWA算法比使用A*算法和DWA算法的路径规划平均距离少23.83%。使用混合A*算法和TEB算法比使用A*算法和TEB算法的路径规划平均距离少22.49%。使用A*算法和TEB算法比使用A*算法和DWA算法的路径规划平均时间少6.99%。使用混合A*算法和TEB算法比使用混合A*算法和DWA算法的路径规划平均时间少6.25%。混合A*算法结合TEB算法的路径规划效率更高,规划出的路径更短,验证了混合路径规划算法的有效性和优越性。最后,在仓储环境中进行了阿克曼转向机器人路径规划实验,针对机器人实际运行轨迹与规划的轨迹有较大误差的问题,提出通过卡尔曼滤波对障碍物的位姿进行估计,并对机器人的轨迹进行跟踪的方法。结果表明:卡尔曼滤波的跟踪误差在0.2 m以内。

    Abstract:

    Aiming at the problem that the path planned by the hybrid A* algorithm is not smooth enough and low efficiency, the evaluation function of the hybrid A* algorithm is optimized, the method of Angle penalty coefficient is introduced to make the path smoother, and the method of node expansion with optimal step length is introduced to improve the search efficiency. Firstly, A hybrid A* algorithm is combined with TEB (Timed Elastic Band) algorithm to generate a hybrid path planning algorithm. Then, the path planning process of Ackermann's steering Robot is simulated based on ROS (Robot Operating System).The results show that the average distance of path planning using mixed A* algorithm and DWA algorithm is 23.83% less than that using A* algorithm and DWA algorithm. The average path planning distance using the mixed A* algorithm and TEB algorithm is 22.49% less than that using the A* algorithm and TEB algorithm. The average path planning time using A* algorithm and TEB algorithm is 6.99% less than that using A* algorithm and DWA algorithm. The average path planning time using the mixed A* algorithm and TEB algorithm is 6.25% less than that using the mixed A* algorithm and DWA algorithm.The path planning efficiency of hybrid A* algorithm combined with TEB algorithm is higher and the planned path is shorter, which proves the effectiveness and superiority of hybrid path planning algorithm. Finally, the path planning experiment of the Ackerman steering robot is carried out in the storage environment. Aiming at the large error between the actual trajectory and the planned trajectory of the robot, a method is proposed to estimate the pose of the obstacle by Kalman filter and track the trajectory of the robot. The results show that the tracking error of Kalman filter is less than 0.2 m.

    参考文献
    相似文献
    引证文献
引用本文

陶天艺.基于混合A星算法的移动机器人路径规划研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-15
  • 最后修改日期:2024-08-01
  • 录用日期:2024-08-02
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司