基于深度学习的多模态行人重识别综述
DOI:
作者:
作者单位:

南京信息工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


11A review of multi-modal person re-identification based on deep learning
Author:
Affiliation:

Nanjing University of Information Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行人重识别(Person re-identification,简称ReID)是智能视频监控领域的一项关键技术,旨在跨像机检索同一目标行人。由于监控场景的复杂性,传统的单模态行人重识别在低光、雾天等极端情况的适用性较差,近年来,由于实际应用的需要以及深度学习的快速发展,基于深度学习的多模态行人重识别受到了广泛的关注。本文针对近年来多模态行人重识别的发展脉络进行综述,阐述了传统单模态行人重识别的不足;归纳总结了多模态行人重识别常见应用场景及其优势以及各数据集的构成;重点分析各种场景多模态行人重识别的相关方法及其分类,并探讨了当前研究的热点和挑战;最后,展望了多模态行人重识别未来的发展趋势和潜在应用价值。

    Abstract:

    Person re-identification (ReID) is a key technology in the field of intelligent video surveillance, aimed at retrieving the same person across cameras. Due to the complexity of monitoring scenarios, traditional single modal person re-identification is not suitable for some extreme situations such as low light and foggy days. In recent years, due to the needs of practical applications and the rapid development of deep learning, multi-modal person re-identification based on deep learning has received widespread attention. This article reviews the development of multi-modal person re-identification based on deep learning in recent years, elaborates on the shortcomings of traditional single modal person re-identification and summarizes the common application scenarios and advantages of multi-modal person re-identification, as well as the composition of each dataset. It focuses on analyzing the relevant methods and classifications of multi-modal person re-identification and discusses the hot spots and challenges of current research. Finally, the future development trends and potential application values of multi-modal person re-identification are prospected.

    参考文献
    相似文献
    引证文献
引用本文

张国庆.基于深度学习的多模态行人重识别综述[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-13
  • 最后修改日期:2024-05-20
  • 录用日期:2024-05-21
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司