自适应下垂系数的孤岛微电网无功均分策略
作者:
中图分类号:

TM743

基金项目:

陕西省自然科学基础研究计划(2023-JC-YB-308)


Adaptive droop coefficient-based reactive power sharing strategy for islanded microgrid
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    在孤岛微电网中,由于线路阻抗的不匹配,常常导致传统的下垂控制无法完成分布式电源(DG)之间无功功率的均分.为了消除DG之间的无功不均分,首先分析了传统下垂控制无法完成无功均分的原因,设计了可自适应调节的无功下垂系数,使无功下垂系数可以满足无功均分的条件,从而解决无功功率无法均分的问题.为了使无功均分控制器具有更高的灵活性和可靠性,设计了动态分布式观测器,并证明了其收敛性.动态分布式观测器可以使DG以分布式的方式更加灵活可靠地获取所需的信息.通过4个不同的算例对所提的控制策略进行验证,仿真结果验证了所提控制策略的优越性和有效性.

    Abstract:

    In the islanded microgrid,the mismatch in line impedance hinders the traditional droop control from achieving an equal distribution of reactive power among Distributed Generation (DG) sources.To address this problem and enhance the flexibility and reliability of the controller,this paper analyzes the reasons behind the failure of traditional droop control and proposes an adaptive droop coefficient that can be dynamically adjusted to meet the conditions for reactive power sharing.Additionally,a dynamic distributed observer is designed and its convergence is proven,which allows DG sources to obtain necessary information flexibly and reliably in a distributed manner.Finally,the proposed control strategy is verified through simulations in four different scenarios,and the results demonstrate its superiority and effectiveness.

    参考文献
    [1] 侯帅丞, 陈家伟, 张秀琴. 微电网逆变器的自适应滑模控制策略研究[J]. 南京信息工程大学学报(自然科学版), 2018, 10(2):153-159 HOU Shuaicheng, CHEN Jiawei, ZHANG Xiuqin. Adaptive sliding mode control strategy for inverter in microgrid[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2018, 10(2):153-159
    [2] 王凌云, 周璇卿, 李升, 等. 基于改进功率环的微电网对等控制策略研究[J]. 中国电力, 2017, 50(9):171-177 WANG Lingyun, ZHOU Xuanqing, LI Sheng, et al. Research on peer to peer control strategy for microgrid based on the improved power loop[J]. Electric Power, 2017, 50(9):171-177
    [3] 米阳, 宋根新, 宋元元, 等. 孤岛交直流混合微电网群多级功率管理策略[J]. 电力系统自动化, 2020, 44(7):38-45 MI Yang, SONG Genxin, SONG Yuanyuan, et al. Strategy of multi-level power management for islanded AC/DC hybrid microgrid cluster[J]. Automation of Electric Power Systems, 2020, 44(7):38-45
    [4] 张宇, 王洪希, 王璞. 交直流混合微电网互联变流器微分平坦控制[J]. 中国电力, 2022, 55(7):102-109, 120 ZHANG Yu, WANG Hongxi, WANG Pu. Flatness-based control of AC/DC hybrid microgrid interconnected converter[J]. Electric Power, 2022, 55(7):102-109, 120
    [5] 董杰, 李领南, 张纯江, 等. 微电网中的有功功率和无功功率均分控制[J]. 电力系统自动化, 2016, 40(10):90-96 DONG Jie, LI Lingnan, ZHANG Chunjiang, et al. Sharing control of active power and reactive power in microgrid[J]. Automation of Electric Power Systems, 2016, 40(10):90-96
    [6] Qi Y, Fang J Y, Tang Y. Utilizing the dead-time effect to achieve decentralized reactive power sharing in islanded AC microgrids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(3):2350-2361
    [7] He J W, Li Y W. Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation[J]. IEEE Transactions on Industry Applications, 2011, 47(6):2525-2538
    [8] Wang K, Yuan X B, Geng Y W, et al. A practical structure and control for reactive power sharing in microgrid[J]. IEEE Transactions on Smart Grid, 2019, 10(2):1880-1888
    [9] Sellamna H, Pavan A M, Mellit A, et al. An iterative adaptive virtual impedance loop for reactive power sharing in islanded meshed microgrids[J]. Sustainable Energy, Grids and Networks, 2020, 24:100395
    [10] Wu X Y, Shen C, Iravani R. Feasible range and optimal value of the virtual impedance for droop-based control of microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(3):1242-1251
    [11] Mohammed N, Lashab A, Ciobotaru M, et al. Accurate reactive power sharing strategy for droop-based islanded AC microgrids[J]. IEEE Transactions on Industrial Electronics, 2023, 70(3):2696-2707
    [12] An R H, Liu Z, Liu J J. Successive-approximation-based virtual impedance tuning method for accurate reactive power sharing in islanded microgrids[J]. IEEE Transactions on Power Electronics, 2021, 36(1):87-102
    [13] Lu J H, Zhao M, Golestan S, et al. Distributed event-triggered control for reactive, unbalanced, and harmonic power sharing in islanded AC microgrids[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2):1548-1560
    [14] 陈晓祺, 贾宏杰, 陈硕翼, 等. 基于线路阻抗辨识的微电网无功均分改进下垂控制策略[J]. 高电压技术, 2017, 43(4):1271-1279 CHEN Xiaoqi, JIA Hongjie, CHEN Shuoyi, et al. Improved droop control strategy based on line impedance identification for reactive power sharing in microgrid[J]. High Voltage Engineering, 2017, 43(4):1271-1279
    [15] Gupta Y, Parganiha N, Rathore A K, et al. An improved reactive power sharing method for an islanded microgrid[J]. IEEE Transactions on Industry Applications, 2021, 57(3):2954-2963
    [16] Minetti M, Rosini A, Denegri G B, et al. An advanced droop control strategy for reactive power assessment in islanded microgrids[J]. IEEE Transactions on Power Systems, 2022, 37(4):3014-3025
    [17] 罗朝旭, 刘洋, 罗钦, 等. 基于动态下垂系数的低压微电网无功控制策略[J]. 电力建设, 2022, 43(1):78-86 LUO Zhaoxu, LIU Yang, LUO Qin, et al. Reactive power control strategy of low-voltage microgrid applying dynamic droop coefficient[J]. Electric Power Construction, 2022, 43(1):78-86
    [18] 米阳, 蔡杭谊, 宋元元, 等. 基于同步补偿的孤岛微电网无功均分研究[J]. 电工技术学报, 2019, 34(9):1934-1943 MI Yang, CAI Hangyi, SONG Yuanyuan, et al. Study on reactive power sharing of island microgrid based on synchronous compensation[J]. Transactions of China Electrotechnical Society, 2019, 34(9):1934-1943
    [19] Gupta Y, Chatterjee K, Doolla S. A simple control scheme for improving reactive power sharing in islanded microgrid[J]. IEEE Transactions on Power Systems, 2020, 35(4):3158-3169
    [20] 颜丽, 米阳, 孙威, 等. 基于改进下垂控制的孤岛交流微电网无功分配研究[J]. 太阳能学报, 2021, 42(8):7-15 YAN Li, MI Yang, SUN Wei, et al. Reactive power distribution control strategy in islanded AC microgrid based on improved droop control[J]. Acta Energiae Solaris Sinica, 2021, 42(8):7-15
    [21] Xu Y L, Liu W X. Novel multiagent based load restoration algorithm for microgrids[J]. IEEE Transactions on Smart Grid, 2011, 2(1):152-161
    [22] 张小莲, 石春晖, 郝思鹏, 等. 基于动态一致性算法的微电网无功功率分布式二级控制策略[J]. 可再生能源, 2022, 40(3):368-376 ZHANG Xiaolian, SHI Chunhui, HAO Sipeng, et al. Distributed secondary reactive power control strategy of microgrid based on dynamic consensus algorithm[J]. Renewable Energy Resources, 2022, 40(3):368-376
    [23] Chen Y L, Qi D L, Li C Y. Distributed dynamic averaging tracking without rate measurements[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(7):4359-4364
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程勇,成琦,姚磊茹,赵建文.自适应下垂系数的孤岛微电网无功均分策略[J].南京信息工程大学学报(自然科学版),2024,16(4):528-536
CHENG Yong, CHENG Qi, YAO Leiru, ZHAO Jianwen. Adaptive droop coefficient-based reactive power sharing strategy for islanded microgrid[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(4):528-536

复制
分享
文章指标
  • 点击次数:20
  • 下载次数: 414
  • HTML阅读次数: 31
  • 引用次数: 0
历史
  • 收稿日期:2023-07-26
  • 在线发布日期: 2024-08-07
  • 出版日期: 2024-07-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司