基于改进YOLOv8的果园复杂环境下苹果检测模型研究
DOI:
作者:
作者单位:

天津理工大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

天津市科技支撑计划项目(19YFZCSN00360,18YFZCNC01120)


Research on Apple Detection Model in Complex Orchard Environments Based on Improved YOLOv8
Author:
Affiliation:

Tianjin University of Technology

Fund Project:

Tianjin Science and Technology Support Program(19YFZCSN00360,18YFZCNC01120)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了使采摘机器人能够在果园复杂环境下(如不同光照条件、叶子遮挡、密集的苹果群和超远视距等场景)对成熟程度各异的苹果果实进行快速且精确的检测,本研究提出了一种基于改进YOLOv8的苹果果实检测模型。首先将EMA注意力机制模块集成到YOLOv8模型中,使模型更加关注待检测果实区域,抑制背景和枝叶遮挡等一般特征信息,提高被遮挡果实的检测准确率;其次,使用提取特征更加高效的三支路DWR模块对原始C2f模块进行重构,通过多尺度特征融合方法提高小目标检测能力;同时结合DAMO-YOLO的思想,对原始YOLOv8颈部进行重构,实现高层语义和低层空间特征的高效融合;最后使用Inner-SIoU损失函数对模型进行优化,提高识别精度。在复杂的果园环境中,以苹果作为检测对象,实验结果表明:本文所提算法在测试集下的P、R、mAP50、mAP50-95以及F1分别达到86.1%、89.2%、94.0%、64.4%和87.6%,改进后的算法在大部分指标上均优于原始模型,并通过在不同数量果实的对比实验中表明,该方法具有优异的鲁棒性。这为解决复杂环境下果实采摘机器人的精准识别问题,提供了实际应用价值。

    Abstract:

    In order to enable picking robots to quickly and accurately detect apple fruits with varying levels of maturity in complex orchard environments (such as different lighting conditions, leaf occlusions, dense apple clusters, and ultra-long viewing distances), this study proposes an apple fruit detection model based on an improved YOLOv8. First, the EMA attention mechanism module is integrated into the YOLOv8 model, making the model more focused on the region of interest for fruit detection, suppressing general feature information such as background and branch leaf occlusion, and improving the detection accuracy of occluded fruits. Second, the original C2f module is reconstructed using a more efficient three-branch DWR module for feature extraction, which enhances the small object detection capability through multi-scale feature fusion methods. Simultaneously, based on the DAMO-YOLO idea, the original YOLOv8 neck is reconstructed to achieve efficient fusion of high-level semantics and low-level spatial features. Finally, the model is optimized using the Inner-SIoU loss function to improve the recognition accuracy. In the complex orchard environment, using apples as the detection target, the experimental results show that the proposed algorithm achieves P, R, mAP50, mAP50-95, and F1 of 86.1%, 89.2%, 94.0%, 64.4%, and 87.6% on the test set, respectively. The improved algorithm outperforms the original model in most indicators, and demonstrates excellent robustness through comparative experiments with different numbers of fruits. This provides practical application value for addressing the precise identification problem of fruit picking robots in complex environments.

    参考文献
    相似文献
    引证文献
引用本文

岳有军,漆潇,赵辉,王红君.基于改进YOLOv8的果园复杂环境下苹果检测模型研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-10
  • 最后修改日期:2024-07-07
  • 录用日期:2024-07-09
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司