基于无人机雷达和光学影像的城市森林地上生物量估算方法建立及应用
DOI:
作者:
作者单位:

南京信息工程大学地理科学学院

作者简介:

通讯作者:

中图分类号:

K909

基金项目:

(42161144003;41771140)资助。


Building and application of an estimation method for urban forest aboveground biomass based on UAV LiDAR and optical images
Author:
Affiliation:

School of Geographical Sciences,Nanjing University of information Science Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前生物量估算的数据来源包括光学、合成孔径雷达(Synthetic Aperture Radar,SAR)和激光雷达(Light Detection and Ranging,LiDAR)等。利用遥感技术对区域生物量进行反演时,实地样方数据的不足限制了模型反演精度的提升。本研究采用无人机雷达点云数据结合实地调查扩大样本量,试图验证利用机载雷达替代实地调查的可行性,并与光学影像特征(植被指数数据和纹理特征数据)建立植被地上生物量反演模型。结果表明:1)基于LiDAR获取的单株冠幅数据估算的生物量具有较好的精度,与实地测算的生物量结果的总体误差百分比为1.74%;2)南京龙王山风景区利用LiDAR数据估算的地上生物量密度为96.78 Mg·hm-2,利用光学影像特征模型反演的生物量密度为107.94 Mg·hm-2;3)毗邻龙王山的校园验证数据结果显示,模型反演生物量密度值为92.6 Mg·hm-2,基于LiDAR数据的结果为104.11 Mg·hm-2,可以看出所提出的方法具有较好的效果。因此,通过无人机LiDAR和冠幅生物量模型可以扩大样本量,由此建立的影像特征生物量模型具有良好的效果,为大范围生物量反演提供一种可行的方法。

    Abstract:

    There are various remote sensing data sources for biomass estimation, including optical, synthetic aperture radar (SAR) and light detection and ranging (LiDAR). When using remote sensing techniques for regional biomass estimation, the scarcity of field plot data constrains the improvement of model inversion accuracy. In this study, unmanned aerial vehicle LiDAR point cloud data combined with field survey was used to expand the sample size, trying to verify the feasibility of using airborne radar instead of field survey, and establishing an inversion model of vegetation aboveground biomass with optical images features(Vegetation index data and texture feature data). The results show that: 1) The biomass estimated based on the tree crown width data obtained from LiDAR has a high level of accuracy, with an overall error percentage of 1.74% compared to the biomass results obtained from field measurements.; 2) the aboveground biomass density estimated from the LiDAR data is 96.78 Mg·hm-2, the biomass density from the optical image feature model is 107.94 Mg·hm-2 in the Longwang Hill; 3) The validation data from the campus adjacent to Longwang Mountain shows that the model-inverted aboveground biomass density is 92.6 Mg·hm-2, while the result based on LiDAR data is 104.11 Mg·hm-2. It can be observed that this method demonstrates good effectiveness. Therefore, the sample size can be expanded by unmanned aerial vehicle LiDAR and crown amplitude biomass model, and the resulting image characteristic biomass model has good results and provides a feasible method for large-scale biomass inversion.

    参考文献
    相似文献
    引证文献
引用本文

张曈,陈爽,曹书舸.基于无人机雷达和光学影像的城市森林地上生物量估算方法建立及应用[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-30
  • 最后修改日期:2024-04-23
  • 录用日期:2024-04-24
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司