基于风电场储能优化控制的风电柔直并网直流故障穿越控制策略
作者单位:

1.东北电力大学;2.国网吉林供电公司;3.国网辽源供电公司;4.国网四平供电公司;5.国网白城供电公司;6.吉林省蓝新电力设备有限公司


DC fault ride-through control strategy of MMC-HVDC-connected wind farm by optimal control of energy storage
Author:
Affiliation:

1.Northeast Electric Power University;2.1.Northeast Electric Power University 2.Dongying Power Supply Company of State Grid Shandong Electric Power Company;3.State Grid Jilin Electric Power Supply Company;4.State Grid Liaoyuan Electric Power Supply Company;5.State Grid Siping Electric Power Supply Company;6.State Grid Baicheng Electric Power Supply Company;7.Jilin Lanxin Power Equipment Co. Ltd.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    利用风电场各个风机内部配置的储能单元消纳风电经双极柔直并网系统直流故障期间的不平衡功率是一种有效解决方案,但是现有文献仅将风电场等值为单台风机进行研究并未考虑各个储能单元的剩余容量差异,容易造成剩余容量较小的储能单元过载而剩余容量较大的储能单元仍有较大的储能能力未被利用,从而导致故障期间功率不平衡。针对上述问题,本文提出基于风电场储能优化控制的直流故障穿越协调控制策略。该策略将荷电状态(State of Charge,SOC)方差作为定量描述储能剩余容量差异程度的指标,并以SOC方差下降率最大作为目标函数,将非故障极换流站转带后的剩余不平衡功率优化分配给各个风机内部的储能单元,在保证故障期间系统功率平衡的同时,缩小各储能单元之间的剩余容量的差异。在PSCAD/EMTDC仿真平台上搭建模型将所提的储能功率优化分配方案与传统平均分配方案进行对比。结果表明储能功率优化分配方案充分发挥了储能系统的功率消纳能力,提高了系统直流故障穿越能力。

    Abstract:

    It is an effective solution to utilize the energy storage unit (ESU) configured inside each wind turbine of the wind farm to absorb the unbalanced power during the DC fault of the wind power integration through a bipolar MMC-HVDC. However, the existing literature only equates the wind farm to a single wind generator (WG) and does not consider the residual capacity difference of each ESU. It is easy to cause the ESU with small residual capacity to be overloaded, while the ESU with large residual capacity still has a large energy storage capacity that is not utilized, resulting in power imbalance during the fault. To address the above problems, this paper proposes a coordinated control strategy for DC fault ride-through based on optimization control of ESUs inside WGs. In this strategy, the variance of state of charge (SOC) is used as an index to quantitatively describe the difference of residual capacity of ESUs, and the maximum decrease rate of SOC variance is taken as the objective function. The residual unbalanced power after the conversion of non-fault pole converter station is optimally allocated to the ESUs within each WG, so as to reduce the difference of residual capacity while ensuring the power balance of the system during the fault period. A model is developed and carried out on the PSCAD/EMTDC simulation platform to compare the proposed power optimization allocation scheme with the traditional average allocation scheme. The results show that the optimal allocation scheme fully developed the power consumption ability of the energy storage system and improves the DC fault ride-through ability of the system.

    参考文献
    [1] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(06): 61-69.
    Shu Yinbiao, Chen Guoping, He Jingbo, et al. Building a New Electric Power System Based on New Energy Sources[J]. Strategic Study of CAE, 2021, 23(06): 61-69.
    [2] 风电经架空线双极MMC-HVDC并网的直流故障穿越协调控制策略[J].中国电机工程学报,2020,40(11):3516-3527.
    Jiang Shouqi, Li Guoqing, Xin Yechun, et al. Coordinated Control Strategies for DC Fault Ride-through of Wind Power Integration via Bipolar MMC-HVDC Overhead Lines[J]. Proceedings of the CSEE, 2020, 40(11): 3516-3527.
    [3] 邹常跃, 韦嵘晖, 冯俊杰, 等. 柔性直流输电发展现状及应用前景[J]. 南方电网技术, 2022, 16(03): 1-7.
    Zou Changyue, Wei Ronghui, Feng Junjie, et al. Development Status and Application Prospect of VSC-HVDC[J]. SOUTHERN POWER SYSTEM TECHNOLOGY, 2022, 16(03): 1-7.
    [4] 辛保安, 郭铭群, 王绍武, 等. 适应大规模新能源友好送出的直流输电技术与工程实践[J]. 电力系统自动化, 2021,45(22):1-8.
    Xin Baoan, Guo Mingqun, Wang Shaowu, et al. Friendly HVDC Transmission Technologies for Large-scale Renewable Energy and Their Engineering Practice[J]. Automation of Electric Power Systems, 2021, 45(22): 1-8.
    [5] 束洪春, 邵宗学, 江耀曦, 等. 具备闭锁和非闭锁模式抑制直流故障电流的新型模块化多电平变换器拓扑[J]. 电工技术学报, 2022, 37(21):5526-5540.
    Shu Hongchun, Shao Zongxue, Jiang Yaoxi, et al. A New Modular Multilevel Converter Topology with Capability of DC Faults Clearing under Blocking and Non-Blocking Mode[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5526-5540.
    [6] 胡隽璇,彭国荣,邸世民,等.海上风电混合级联直流输电系统直流短路故障分析与隔离[J].电力系统及其自动化学报,2023,35(02):148-158.
    Hu Junxuan, Peng Guorong, Di Shimin, et al. DC Short-circuit Fault Analysis and Isolation Strategy for Offshore Wind Power Hybrid Cascaded DC Power Transmission System[J]. Proceedings of the CSU-EPSA, 2023,35(02):148-158.
    [7] 吴婧, 姚良忠, 王志冰, 等. 直流电网MMC拓扑及其直流故障电流阻断方法研究[J].中国电机工程学报,2015,35(11):2681-2694.
    Wu Jing, Yao Liangzhong, Wang Zhibing, et al. The Study of MMC Topologies and Their DC Fault Current Blocking Capacities in DC Grid[J]. Proceedings of the CSEE, 2015, 35(11): 2681-2694.
    [8] 吴亚楠, 吕铮, 贺之渊, 等. 基于架空线的直流电网保护方案研究[J]. 中国电机工程学报, 2016, 36(14): 3726-3734.
    Wu Yanan, Lü Zheng, He Zhiyuan, et al. Study on the Protection Strategies of HVDC Grid for Overhead Line Application[J]. Proceedings of the CSEE, 2016, 36(14): 3726-3734.
    [9] 司马文霞, 赵俊宁, 杨鸣,等. 分体式能量耗散的直流线路故障快速隔离[J]. 电工技术学报, 2022, 37(S1): 126-133.
    Sima Wenxia, Zhao Junning, Yang Ming, et al. Research on thyristor conduction angle characteristics in transient process of TCSC[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 126-133.
    [10] 郭铭群, 梅念, 李探, 等. 500kV张北柔性直流电网工程系统设计[J].电网技术,2021,45(10):4194-4204.
    Guo Mingqun, Mei Nian, Li Tan, et al. System Design of 500kV Zhangbei VSC-based DC Grid Project[J]. Power System Technology, 2021, 45(10): 4194-4204.
    [11] 曹帅, 刘东, 赵成功, 等. 适用于风电经柔性直流并网系统的柔性耗能装置及控制策略[J]. 电力系统保护与控制, 2022, 50(23): 51-62.
    Cao Shuai, Liu Dong, Zhao Chenggong, et al. A flexible energy dissipation device with control strategy for an HVDC wind power integration system[J]. Power System Protection and Control, 2022, 50(23): 51-62.
    [12] 张福轩, 郭贤珊, 汪楠楠, 等. 接入新能源孤岛系统的双极柔性直流系统盈余功率耗散策略[J]. 电力系统自动化, 2020, 44(05): 154-160.
    Zhang Fuxuan, Guo Xianshan, Wang Nannan, et al. Surplus Power Dissipation Strategy for Bipolar VSC-HVDC System with Integration of Islanded Renewable Energy Generation System[J]. Automation of Electric Power Systems, 2020, 44(05): 154-160.
    [13] Jiang Shouqi, Xin Yechun, Li Guoqing, et al. A Novel DC Fault Ride-Through Method for Wind Farms Connected to the Grid Through Bipolar MMC-HVDC Transmission[J]. IEEE Transactions on Power Delivery, 2020, 35(6): 2937-2950.
    [14] 张坤, 黎春湦, 毛承雄, 等. 基于超级电容器-蓄电池复合储能的直驱风力发电系统的功率控制策略(英文)[J]. 中国电机工程学报, 2012, 32(25): 99-108+15.
    Zhang Kun, Li Chunsheng, Mao Chengxiong, et al. Power Control of Directly-driven Wind Generation Systems With Battery/Ultra-capacitor Hybrid Energy Storage[J]. Proceedings of the CSEE, 2012, 32(25): 99-108+15.
    [15] 王鹏, 王晗, 张建文, 等. 超级电容储能系统在风电系统低电压穿越中的设计及应用[J].中国电机工程学报,2014,34(10):1528-1537.
    Wang Peng, Wang Han, Zhang Jianwen, et al. Design and Application of Supercapacitor Energy Storage System Used in Low Voltage Ride Through of Wind Power Generation System[J]. Proceedings of the CSEE, 2014, 34(10): 1528-1537.
    [16] 孙银锋, 路玉泽, 刘宇晗, 等. 基于储能的风电柔直并网系统直流故障穿越协调控制策略[J]. 电力系统自动化, 2023, 47(03): 122-132.
    Sun Yinfeng, Lu Yuze, Liu Yuhan, et al. Coordinated Control Strategy of DC Fault Ride-through for Flexible DC Grid-connected System of Wind Power Based on Energy Storage[J]. Automation of Electric Power Systems, 2023, 47(03): 122-132.
    [17] 王文亮, 葛宝明, 毕大强, 等. 储能型直驱永磁同步风力发电控制系统[J]. 电力系统保护与控制, 2010, 38(14): 43-48+78.
    Wang Wenliang, Ge Baoming, Bi Daqiang, et al. Energy storage based direct-drive permanent magnet synchronous wind power control system[J]. Power System Protection and Control, 2010, 38(14): 43-48+78.
    [18] 姚骏, 陈西寅, 夏先锋, 等. 含飞轮储能单元的永磁直驱风电系统低电压穿越控制策略[J]. 电力系统自动化, 2012, 36(13): 38-44.
    Yao Jun, Chen Xiyin, Xia Xianfeng, et al. A Low Voltage Ride-through Control Strategy for Direct-driven Permanent Magnet Wind Power Generation System with Flywheel Energy Storage Unit[J]. Automation of Electric Power Systems, 2012, 36(13): 38-44.
    [19] Abbey C, Joos G. Supercapacitor Energy Storage for Wind Energy Applications[J]. IEEE Transactions on Industry Applications, 2007, 43(3): 769-776.
    [20] Thapa K B, Jayasawal K. Pitch Control Scheme for Rapid Active Power Control of a PMSG-Based Wind Power Plant[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6756-6766.
    [21] Basak R, Bhuvaneswari G, Pillai R R. Low-Voltage Ride-Through of a Synchronous Generator-Based Variable Speed Grid-Interfaced Wind Energy Conversion System[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 752-762.
    [22] 段国朝, 王跃, 尹太元, 等. 模块化多电平变流器直流短路故障电流计算[J]. 电网技术, 2018, 42(07): 2145-2152.
    Duan Guozhao, Wang Yue, Yin Taiyuan, et al. DC Short Circuit Current Calculation for Modular Multilevel Converter[J]. Power System Technology, 2018, 42(07): 2145-2152.
    [23] 倪斌业, 向往, 周猛, 等. 半桥MMC型柔性直流电网自适应限流控制研究[J]. 中国电机工程学报, 2020, 40(17): 5609-5620.
    Ni Binye, Xiang Wang, Zhou Meng, et al. Research on Adaptive-current-limiting Control of VSC-HVDC Grid Based on Half-bridge MMC[J]. Proceedings of the CSEE, 2020, 40(17): 5609-5620.
    [24] 董旭, 张峻榤, 王枫, 等. 风电经架空柔性直流输电线路并网的交直流故障穿越技术[J]. 电力系统自动化, 2016, 40(18): 48-55.
    Dong Xu, Zhang Junjie, Wang Feng, et al. AC and DC Fault Ride-through Technology for Wind Power Integration via VSC-HVDC Overhead Lines[J]. Automation of Electric Power Systems, 2016, 40(18): 48-55.
    [25] 余洋, 陈东阳, 吴玉威, 等. 风电波动平抑下考虑SOC均衡及收益的电池储能功率分配策略[J]. 高电压技术, 2023, 49(04): 1714-1723.
    YU Yang, CHEN Dongyang, WU Yuwei, et al. Power Allocation Strategy Considering SOC Balance and Income for Battery Energy Storage in Smoothing Wind Power Fluctuations[J]. High Voltage Engineering, 2023, 49(04): 1714-1723.DC fault ride-through control strategy of MMC-HVDC-connected wind farm by optimal control of energy storageSUN Yinfeng1, GUO Yuhang1, LIANG Dong2, Han Bing3, Li Lei4, Shen Tuo5, Meng Fanxue6(1. Key Laboratory of Modern Power System Simulation and Control Renewable Energy Technology, Ministry of Education (Northeast Electric Power University), Jilin 132012, Jilin, China;
    2. State Grid Jilin Electric Power Supply Company, Jilin 132001, Jilin, China;
    3. State Grid Liaoyuan Electric Power Supply Company, Liaoyuan 136200, Jilin, China;
    4. State Grid Siping Electric Power Supply Company, Siping 136000, Jilin, China;
    5. State Grid Baicheng Electric Power Supply Company, Baicheng 131300, Jilin, China;
    6. Jilin Lanxin Power Equipment Co. Ltd., Changchun 130000, Jilin, China;)ABSTRACT: It is an effective solution to utilize the energy storage unit (ESU) configured inside each wind turbine of the wind farm to absorb the unbalanced power during the DC fault of the wind power integration through a bipolar MMC-HVDC. However, the existing literature only equates the wind farm to a single wind generator (WG) and does not consider the residual capacity difference of each ESU. It is easy to cause the ESU with small residual capacity to be overloaded, while the ESU with large residual capacity still has a large energy storage capacity that is not utilized, resulting in power imbalance during the fault. To address the above problems, this paper proposes a coordinated control strategy for DC fault ride-through based on optimization control of ESUs inside WGs. In this strategy, the variance of state of charge (SOC) is used as an index to quantitatively describe the difference of residual capacity of ESUs, and the maximum decrease rate of SOC variance is taken as the objective function. The residual unbalanced power after the conversion of non-fault pole converter station is optimally allocated to the ESUs within each WG, so as to reduce the difference of residual capacity while ensuring the power balance of the system during the fault period. A model is developed and carried out on the PSCAD/EMTDC simulation platform to compare the proposed power optimization allocation scheme with the traditional average allocation scheme. The results show that the optimal allocation scheme fully developed the power consumption ability of the energy storage system and improves the DC fault ride-through ability of the system.Keywords: wind power; MMC-HVDC; energy storage; DC fault ride-through
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙银锋,郭宇航,梁栋,韩冰,李磊,沈拓,孟凡学.基于风电场储能优化控制的风电柔直并网直流故障穿越控制策略[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:67
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-11
  • 最后修改日期:2024-06-01
  • 录用日期:2024-06-03

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司