基于非高斯度量和最大相关熵的CKF跟踪方法
DOI:
作者:
作者单位:

1.河南科技大学;2.洛阳理工学院

作者简介:

通讯作者:

中图分类号:

基金项目:

中原科技创新领军人才(234200510018);国家自然基金(62172142,62176113);河南省科技攻关项目(222102210080)


CKF Tracking Method Based on Non Gaussian Metrics and Maximum Correlation Entropy
Author:
Affiliation:

1.Henan University of Science and Techonology;2.Luoyang Institute of Science and Technology

Fund Project:

Leading Talents of Science and Technology in the Central Plain of China (224200510018);National Natural Science Foundation of China (62172142,62176113);Henan Province Science and Technology Research Projects(222102210080)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多传感器信息融合存在的问题,提出一种基于非高斯度量和最大相关熵的CKF跟踪方法。首先,为解决系统误差不能较好估计和补偿的问题,提出了构造关于雷达系统误差的伪量测与等效量测方程的方法,并采用卡尔曼滤波对雷达系统误差进行实时估计。其次,为解决偏度峰度检验未考虑到样本分布形态问题的问题,提出了一种基于多峰分布度和偏度系数构造函数的方法,通过利用多峰分布度对多峰分布特征进行识别并计算样本偏度,可以更全面地评估数据的非高斯性特征。第三,为解决多传感器融合存在非高斯噪声的难以构建融合系数的问题,提出了依据非高斯强弱构建传感器融合系数的方法。最后,利用柯西核和最大相关熵CKF,解决动态状态估计中非高斯噪声导致的估计精度下降的问题。

    Abstract:

    Aiming at the problems of multi-sensor information fusion, a UAV position estimation based on non Gaussian strength and fused CKF is proposed. Firstly, to address the issue of poor estimation and compensation of system errors, a method of constructing pseudo measurement and equivalent measurement equations for radar system errors is proposed, and Kalman filtering is used for real-time estimation of radar system errors. Secondly, to address the issue of sample distribution morphology not being taken into account in skewness kurtosis testing, a method based on multimodal distribution and skewness coeffi- -cient constructors is proposed. By using multimodal distribution to identify multimodal distribution features and calculate sample skewness, non Gaussian features of data can be more comprehensively evaluated. Thirdly, to solve the problem of difficulty in constructing fusion coefficients due to non Gaussian noise in multi-sensor fusion, a method of constructing sensor fusion coefficients based on the strength of non Gaussian noise is proposed. Finally, using Cauchy kernel and Gaussian kernel CKF, the problem of reduced estimation accuracy caused by non Gaussian noise in dynamic state estimation is solved.

    参考文献
    相似文献
    引证文献
引用本文

程惠茹,郑瑞娟,张娟梅,王国勇.基于非高斯度量和最大相关熵的CKF跟踪方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-08
  • 最后修改日期:2024-04-30
  • 录用日期:2024-04-30
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司