基于非高斯度量和最大相关熵的CKF跟踪方法
作者单位:

1.河南科技大学;2.洛阳理工学院

基金项目:

中原科技创新领军人才(234200510018);国家自然基金(62172142,62176113);河南省科技攻关项目(222102210080)


CKF Tracking Method Based on Non Gaussian Metrics and Maximum Correlation Entropy
Author:
Affiliation:

1.Henan University of Science and Techonology;2.Luoyang Institute of Science and Technology

Fund Project:

Leading Talents of Science and Technology in the Central Plain of China (224200510018);National Natural Science Foundation of China (62172142,62176113);Henan Province Science and Technology Research Projects(222102210080)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对多传感器信息融合存在的问题,提出一种基于非高斯度量和最大相关熵的CKF跟踪方法。首先,为解决系统误差不能较好估计和补偿的问题,提出了构造关于雷达系统误差的伪量测与等效量测方程的方法,并采用卡尔曼滤波对雷达系统误差进行实时估计。其次,为解决偏度峰度检验未考虑到样本分布形态问题的问题,提出了一种基于多峰分布度和偏度系数构造函数的方法,通过利用多峰分布度对多峰分布特征进行识别并计算样本偏度,可以更全面地评估数据的非高斯性特征。第三,为解决多传感器融合存在非高斯噪声的难以构建融合系数的问题,提出了依据非高斯强弱构建传感器融合系数的方法。最后,利用柯西核和最大相关熵CKF,解决动态状态估计中非高斯噪声导致的估计精度下降的问题。

    Abstract:

    Aiming at the problems of multi-sensor information fusion, a UAV position estimation based on non Gaussian strength and fused CKF is proposed. Firstly, to address the issue of poor estimation and compensation of system errors, a method of constructing pseudo measurement and equivalent measurement equations for radar system errors is proposed, and Kalman filtering is used for real-time estimation of radar system errors. Secondly, to address the issue of sample distribution morphology not being taken into account in skewness kurtosis testing, a method based on multimodal distribution and skewness coeffi- -cient constructors is proposed. By using multimodal distribution to identify multimodal distribution features and calculate sample skewness, non Gaussian features of data can be more comprehensively evaluated. Thirdly, to solve the problem of difficulty in constructing fusion coefficients due to non Gaussian noise in multi-sensor fusion, a method of constructing sensor fusion coefficients based on the strength of non Gaussian noise is proposed. Finally, using Cauchy kernel and Gaussian kernel CKF, the problem of reduced estimation accuracy caused by non Gaussian noise in dynamic state estimation is solved.

    参考文献
    [1] 焦方浩.雷达与光电协同制导数据融合方法研究[D].烟台大学,2023.
    [2] 龚明.非平稳非高斯风荷载随机过程的极值研究[D].华东交通大学,2022.
    [3] 陈永康,李素循,李玉林.高超声速流绕椭球的研究[C]//第九届高超声速气动力会议论文集.北京: 北京空气动力研究所,1997: 9-14。
    [4] 张亚洲,赵小强,惠永永等.基于多传感器数据融合的SA-DACNN齿轮箱故障诊断方法[J/OL].控制与决策,1-9. [5]李波,卢哲俊,王志伟等.一种分布式雷达-红外传感器融合多目标跟踪方法[C]//中国电子学会.第十八届全国电波传播年会论文集.国防科技大学电子科学学院;,2023:4.[6] 陈军,丁一,王杰等.基于多特征融合的高机动多目标低截获概率跟踪技术[J/OL].信号处理,1-18[2024-02-24].[7]许博,梁龙,欧阳成等.一种基于多传感器PHD滤波的非协同探测目标跟踪算法[J].电子信息对抗技术,2023,38(04):51-57.[8]李杰,张洛维,王晓燕等.基于视锥距离和自适应权重卡尔曼滤波的多传感器融合算法研究[J/OL].中国公路学报,1-17. [9] 丁江,崔家旭,左启阳等.基于无迹卡尔曼滤波算法的喷涂机器人末端位姿补偿系统[J].机械传动,2024,48(01):8-13. [10] 杨忠意.一类非高斯过程质量相关监控方法研究[D].北京化工大学,2023.[11] 高伟,杨涛,邓召文等.基于最大相关熵SCKF的分布式电动汽车状态估计[J].重庆理工大学学报(自然科学),2023,37(12):58-66.[12] 赵海全,陆鑫.基于广义最大相关熵准则的宽度学习系统[J].信号处理,2023,39(11):1957-1963.[13] Shi X, Yan L, **a Y, et al. Multiple–Model UKF/CKF State Estimation for Nonlinear Systems[C]//Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tian**, China, October 23–25, 2020. Springer Singapore, 2022: 79-90.[14] Chen Y, Miao Z, Li B, et al. Fast Two-position Initial Alignment of SINS Based on CKF[C]//Journal of Physics: Conference Series. IOP Publishing, 2023, 2464(1): 012010.[15] Heinrich L, Huth B, Salzburger A, et al. Combined track finding with GNN & CKF[J]. ar**v preprint ar**v:2401.16016, 2024.[16] Duan H B, Yang Z Y. Large civil aircraft receding horizon control based on Cauthy mutation pigeon inspired optimization[J]. Sci Sin Tech, 2018, 48(3): 277-288.[17] Van Loon S, Fletcher S J. A dynamical Gaussian, lognormal, and reverse lognormal Kalman filter[J]. Quarterly Journal of the Royal Meteorological Society, 2024, 150(758): 262-274.[18] Hebri D, Rasouli S, Ponomarenko S. Fourier reciprocity between generalized elliptical Gaussian and elegant elliptical Hermite-Gaussian beams carrying orbital angular momenta[J]. JOSA A, 2024, 41(2): 338-348.[19] Tang Y, Huang L, Meng X. Study on the influence of non-Gaussian honing surface on contact and flow characteristics[J]. Industrial Lubrication and Tribology, 2024, 76(1): 59-69.[20] Sun Y H, Zeng Y H, Yang Y G. Identification of hybrid energy harvesting systems with non-Gaussian process[J]. Acta Mechanica Sinica, 2024, 40(2): 523154.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程惠茹,郑瑞娟,张娟梅,王国勇.基于非高斯度量和最大相关熵的CKF跟踪方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:84
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-08
  • 最后修改日期:2024-04-30
  • 录用日期:2024-04-30

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司