基于改进U2-Net网络的多裂肌MRI图像分割算法
作者:
中图分类号:

TP391.4

基金项目:

国家自然科学基金(61866009,42164002);广西重点研发计划(AB21220037);广西科技计划(基地和人才专项)(桂科AD20325004);桂林市科学研究与技术开发项目(20210227-2);国家自然科学基金青年基金(41504037)


Segmentation of multifidus muscle MRI images via improved U2-Net
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对腰间盘突出患者MRI图像多裂肌病变部位分割精度较低的问题,提出一种改进的U2-Net网络的新模型,目标是使得编码和解码的子网络通过一系列嵌套的跳跃路径来相互连接.重新设计U2-Net模型中RSU-7、RSU-6、RSU-5、RSU-4中间的跳跃连接,RSU-4F部分不变,用来降低编码解码子网络中特征图的语义缺失.为了提取到高质量的多裂肌特征,加入通道注意力模块,通过学习每个通道的权重,使网络能够更好地关注对任务有贡献的通道,从而提升模型的性能.为验证模型的有效性,在多裂肌MRI图像数据集上进行实验,发现相较于U-Net、U2-Net、U-Net++网络结构,骰子系数(Dice)、豪斯多夫距离(HD)以及均交并比(MIoU)3个指标均有优化.实验结果表明,本文提出的算法对于多裂肌的MRI图像分割有较好的效果,能够辅助医生对病情做出判断.

    Abstract:

    To address the low segmentation accuracy of multifidus muscle lesion sites in MRI images of patients with lumbar disc herniation,this paper proposes a new model to improve the U2-Net network with the goal that the encoding and decoding subnetworks are interconnected by a series of nested jump paths.To reduce the semantic missing of feature maps in the encoding and decoding subnetworks,the jump connections in the middle of RSU-7,RSU-6,RSU-5,and RSU-4 in the U2-Net model are redesigned,while the RSU-4F part remains unchanged.In addition,the channel attention module is added to enable the net to focus on channels of higher contribution to task,thus extract high quality multifractal muscle features.The experiments on the multifidus muscle MRI image dataset show that the improved U2-Net outperforms U-Net,U2-Net and U-Net++ network in indicators of Dice,HD and MIoU.It can be concluded that the proposed approach has good performance on MRI image segmentation of multifidus muscle,which can assist doctors to make diagnosis.

    参考文献
    [1] Deyo R A,Mirza S K.Herniated lumbar intervertebral disk[J].New England Journal of Medicine,2016,374(18):1763-1772
    [2] Vialle L R,Vialle E N,Henao J E S,et al.Lumbar disc herniation[J].Revista Brasileira de Ortopedia,2015,45(1):17-22
    [3] Schryver A,Rivaz H,Rizk A,et al.Ultrasonography of lumbar multifidus muscle in university American football players[J].Medicine and Science in Sports and Exercise,2020,52(7):1495-1501
    [4] 陈齐齐,陈立平,金军,等.多裂肌横截面积与经皮椎间孔镜治疗腰椎间盘突出症患者预后的关系[J].实用医学杂志,2021,37(9):1136-1140 CHEN Qiqi,CHEN Liping,JIN Jun,et al.Relationship between cross-sectional area of multifidus muscle and prognosis of patients with lumbar disc herniation treated by percutaneous endoscopic transforaminal discectomy[J].The Journal of Practical Medicine,2021,37(9):1136-1140
    [5] Ward S R,Kim C W,Eng C M,et al.Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability[J].The Journal of Bone and Joint Surgery American Volume,2009,91(1):176-185
    [6] 钭大雄,王君瑞,陈绍东,等.单侧腰痛患者腰椎多裂肌萎缩相关因素研究[J].浙江医学,2014,36(10):847-849,853 DOU Daxiong,WANG Junrui,CHEN Shaodong,et al.Factors related to lumbar multifidus muscle atrophy in patients with unilateral low back pain[J].Zhejiang Medical Journal,2014,36(10):847-849,853
    [7] Kalichman L,Hodges P,Li L,et al.Changes in paraspinal muscles and their association with low back pain and spinal degeneration:CT study[J].European Spine Journal,2010,19(7):1136-1144
    [8] Aslan M S,Farag A A,Arnold B,et al.Segmentation of vertebrae using level sets with expectation maximization algorithm[C]//2011 IEEE International Symposium on Biomedical Imaging:from Nano to Macro.March 30-April 2,2011,Chicago,IL,USA.IEEE,2011:2010-2013
    [9] Rasoulian A,Rohling R,Abolmaesumi P.Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape pose model[J].IEEE Transactions on Medical Imaging,2013,32(10):1890-1900
    [10] Lim P H,Bagci U,Bai L.Introducing willmore flow into level set segmentation of spinal vertebrae[J].IEEE Transactions on Biomedical Engineering,2013,60(1):115-122
    [11] Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507
    [12] 许美贤,郑琰,周若兰,等.基于BP神经网络和多元线性回归的辛烷值预测[J].南京信息工程大学学报(自然科学版),2023,15(4):379-392 XU Meixian,ZHENG Yan,ZHOU Ruolan,et al.Octane number prediction based on BP neural network and multiple linear regression[J].Journal of Nanjing University of Information Science&Technology (Natural Science Edition),2023,15(4):379-392
    [13] 李辉,闵巍庆,王致岭,等.基于图卷积网络的多标签食品原材料识别[J].南京信息工程大学学报(自然科学版),2019,11(6):743-750 LI Hui,MIN Weiqing,WANG Zhiling,et al.Multi-label food ingredient recognition via graph convolution network[J].Journal of Nanjing University of Information Science&Technology (Natural Science Edition),2019,11(6):743-750
    [14] Shelhamer E,Long J,Darrell T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651
    [15] Zhao H S,Shi J P,Qi X J,et al.Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).July 21-26,2017,Honolulu,HI,USA.IEEE,2017:6230-6239
    [16] Zhou Y P,Chang H Y,Lu X L,et al.DenseUNet:improved image classification method using standard convolution and dense transposed convolution[J].Knowledge-Based Systems,2022,254:109658
    [17] Ronneberger O,Fischer P,Brox T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241
    [18] Diakogiannis F I,Waldner F,Caccetta P,et al.ResUNet-a:a deep learning framework for semantic segmentation of remotely sensed data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,162:94-114
    [19] Thomas E,Pawan S J,Kumar S,et al.Multi-res-attention UNet:a CNN model for the segmentation of focal cortical dysplasia lesions from magnetic resonance images[J].IEEE Journal of Biomedical and Health Informatics,2021,25(5):1724-1734
    [20] Chen W,Liu B,Peng S,et al.S3D-UNet:separable 3D U-Net for brain tumor segmentation[C]//Brainlesion:Glioma,Multiple Sclerosis,Stroke and Traumatic Brain Injuries:4th International Workshop,BrainLes 2018,Held in Conjunction with MICCAI 2018.September 16,2018,Granada,Spain.Springer International Publishing,2019:358-368
    [21] 何晓云,许江淳,陈文绪.基于改进U-Net网络的眼底血管图像分割研究[J].电子测量与仪器学报,2021,35(10):202-208 HE Xiaoyun,XU Jiangchun,CHEN Wenxu.Research on fundus blood vessel image segmentation based on improved U-Net network[J].Journal of Electronic Measurement and Instrumentation,2021,35(10):202-208
    [22] 赵其杰,周安稳,朱俊豪,等.基于PE-Vnet网络的三维骨骼图像分割方法[J].仪器仪表学报,2020,41(7):243-251 ZHAO Qijie,ZHOU Anwen,ZHU Junhao,et al.Segmentation method of three-dimensional bone image based on PE-Vnet network[J].Chinese Journal of Scientific Instrument,2020,41(7):243-251
    [23] Zhang L,Wang H.A novel segmentation method for cervical vertebrae based on PointNet++and converge segmentation[J].Computer Methods and Programs in Biomedicine,2021,200:105798
    [24] Kuok C P,Hsue J Y,Shen T L,et al.An effective CNN approach for vertebrae segmentation from 3D CT images[C]//2018 Pacific Neighborhood Consortium Annual Conference and Joint Meetings (PNC).October 27-30,2018,San Francisco,CA,USA.IEEE,2018:1-6
    [25] Ramachandran P,Parmar N,Vaswani A,et al.Stand-alone self-attention in vision models[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems,2019:68-80
    [26] Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.June 18-23,2018,Salt Lake City,UT,USA.IEEE,2018:7132-7141
    [27] Oktay O,Schlemper J,Folgoc L L,et al.Attention U-Net:learning where to look for the pancreas[J].arXiv e-print,2018,arXiv:1804.03999
    [28] Zhou Z W,Siddiquee M M R,Tajbakhsh N,et al.U-Net++:a nested U-Net architecture for medical image segmentation[C]//4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.September 20,2018,Granada,Spain.Springer International Publishing,2018:3-11
    [29] Huang H M,Lin L F,Tong R F,et al.U-Net 3:a full-scale connected UNet for medical image segmentation[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).May 4-8,2020,Barcelona,Spain.IEEE,2020:1055-1059
    [30] Qin X B,Zhang Z C,Huang C Y,et al.U2-Net:going deeper with nested u-structure for salient object detection[J].Pattern Recognition,2020,106:107404
    [31] Pun T.A new method for grey-level picture thresholding using the entropy of the histogram[J].Signal Processing,1980,2(3):223-237
    [32] Niblack W.An introduction to digital image processing[M].London:Strandberg Publishing Company,1985
    [33] Khan J F,Bhuiyan S M A,Adhami R R.Image segmentation and shape analysis for road-sign detection[J].IEEE Transactions on Intelligent Transportation Systems,2011,12(1):83-96
    [34] 黄鹏,郑淇,梁超.图像分割方法综述[J].武汉大学学报(理学版),2020,66(6):519-531 HUANG Peng,ZHENG Qi,LIANG Chao.Overview of image segmentation methods[J].Journal of Wuhan University (Natural Science Edition),2020,66(6):519-531
    [35] Gu Z W,Cheng J,Fu H Z,et al.CE-net:context encoder network for 2D medical image segmentation[J].IEEE Transactions on Medical Imaging,2019,38(10):2281-2292
    [36] Singh D,Kumar V,Kaur M.Densely connected convolutional networks-based COVID-19 screening model[J].Applied Intelligence,2021,51(5):3044-3051
    [37] Woo S,Park J,Lee J Y,et al.CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王子民,周悦,关挺强,郭欣,胡巍,王茂发.基于改进U2-Net网络的多裂肌MRI图像分割算法[J].南京信息工程大学学报(自然科学版),2024,16(3):364-373
WANG Zimin, ZHOU Yue, GUAN Tingqiang, GUO Xin, HU Wei, WANG Maofa. Segmentation of multifidus muscle MRI images via improved U2-Net[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(3):364-373

复制
分享
文章指标
  • 点击次数:124
  • 下载次数: 687
  • HTML阅读次数: 90
  • 引用次数: 0
历史
  • 收稿日期:2023-07-17
  • 在线发布日期: 2024-06-15
  • 出版日期: 2024-05-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司