基于GEE云计算LandTrendr算法的长三角森林扰动与增益连续监测
作者:
作者单位:

1.南京信息工程大学遥感与测绘工程学院 滁州学院信息与计算机工程学院;2.南京信息工程大学遥感与测绘工程学院;3.滁州学院信息与计算机工程学院 安徽师范大学地理与旅游学院;4.滁州学院信息与计算机工程学院;5.安徽师范大学地理与旅游学院 滁州学院信息与计算机工程学院;6.新疆师范大学地理与旅游学院 滁州学院信息与计算机工程学院

基金项目:

高分辨率对地观测系统重大科技专项、安徽省科技重大专项计划、安徽省重点研发计划项目、安徽省高校杰出青年科学基金项目、安徽省高校协同创新项目、安徽省专项支持计划、安徽省教委科研重点项目


Continuous monitoring of forest disturbance in Yangtze River Delta based on GEE cloud computing LandTrendr algorithm
Author:
Affiliation:

1.Nanjing University of Information Science and Technology;2.School of Information and Computer Engineering, Chuzhou University;3.School of Geography and Tourism, Anhui Normal University;4.School of Geography and Tourism, Xinjiang Normal University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    长江三角洲(以下简称长三角)作为我国森林资源丰富的区域之一,拥有巨大的碳汇潜力。准确捕捉和评估长三角森林的扰动与增益情况,对于提升该地区的森林管理水平以及生态环境保护工作具有重要意义。本研究采用了LandTrendr变化检测算法和基于Google Earth Engine(GEE)云平台的Landsat5-8时间序列叠加的方法,对长三角1991-2020年长达30年的森林扰动与增益进行了监测。结果表明:LandTrendr算法监测森林扰动与增益的总体精度达到88.5%,森林扰动与增益的生产精度、用户精度均高于80%,表明长三角森林扰动与增益监测效果较好。长三角森林扰动总面积为9646.96 km2;森林增益总面积为37205.46 km2,近30年长三角森林总面积呈增加趋势。基于GEE云平台的LandTrendr算法实现了长三角森林扰动与增益的精准监测。

    Abstract:

    The Yangtze River Delta (hereinafter referred to as the YRD), as one of the regions rich in forest resources in China, possesses immense carbon sequestration potential. Accurately capturing and assessing forest disturbances in the YRD is of great significance for enhancing forest management and ecological environmental protection in the region. This study employed the LandTrendr change detection algorithm and the method of Landsat 5-8 time-series stacking based on the Google Earth Engine (GEE) cloud platform to monitor forest disturbances and gains in the YRD over a span of 30 years from 1991 to 2020. The results indicated that the overall accuracy of the LandTrendr algorithm in monitoring forest disturbances and gains reached 88.5%, with both the producer's accuracy and user's accuracy exceeding 80%, demonstrating effective monitoring of forest disturbances and gains in the YRD. The total area of forest disturbances in the YRD was 9646.96 km2, while the total area of forest gains was 37205.46 km2. Over the past 30 years, the total forest area in the YRD has shown an increasing trend. The LandTrendr algorithm, based on the GEE cloud platform, has achieved precise monitoring of forest disturbances and gains in the YRD.

    参考文献
    Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science,2008,320(5882), 1444-1449.
    Pan, Y., et al.A Large and Persistent Carbon Sink in the World''s Forests. Science,2011, 333(6045), 988-993.
    Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ... Townshend, J. R. High-resolution global maps of 21st-century forest cover change. Science,2013,342(6160), 850-853.
    Chazdon, R.L., et al. Carbon Sequestration Potential of Second-growth Forest Regeneration in the Latin American Tropics. Science Advances, 2016,2(5), e1501639.
    Bowman, D.M.J.S., et al. Fire in the Earth System. Science,2009,324(5926), 481-484.
    Lamb, D. Regreening the Bare Hills: Tropical Forest Restoration in the Asia-Pacific Region. Journal of Tropical Forest Science, 2011,23(4), 467-470.
    Franklin, J. F., Forman, R. T. T. Creating Landscape Patterns by Forest Cutting: Ecological Consequences and Principles. Landscape Ecology,1987, 1(1), 5-18.
    Tian, L.; Liao, L.; Tao, Y.; Wu, X.; Li, M. Forest Age Mapping Using Landsat Time-Series Stacks Data Based on Forest Disturbance and Empirical Relationships between Age and Height. Remote Sens. 2023, 15, 2862.
    Qiu, D.; Liang, Y.; Shang, R.; Chen, J.M. Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices. Remote Sens. 2023, 15, 2381.
    尹雄,陈帮乾,古晓威等.基于GEE平台LandTrendr算法的海南岛森林扰动快速监测方法及分析[J/OL].地球信息科学学报:1-14[2023-09-04].
    于森,贾明明,陈高等.基于LandTrendr算法海南东寨港红树林扰动研究[J].自然资源遥感,2023,35(02):42-49.
    陈大蓉,周旭,胡锋等.近30年贵阳市土地利用冲突时空变化分析[J/OL].水土保持研究:1-9[2023-05-17].
    祝善友,张莹,张海龙等.Landsat卫星图像用于大面积森林扰动监测的研究进展[J].国土资源遥感,2014,26(02):5-10.
    王青,王建军,申国珍. 森林生态系统扰动对生态过程的影响. 生态学报, 2014,34(17), 4751-4761.
    Cohen, W.B.; Yang, Z.; Stehman, S.V.; Schroeder, T.A.; Bell, D.M.; Masek, J.G.; Huang, C.; Meigs, G.W. Management. Forest disturbance across the conterminous united states from 1985–2012: The emerging dominance of forest decline. For. Ecol. Manag. 2016, 360, 242–252. [Google Scholar] [CrossRef]
    Masek, J.G.; Goward, S.N.; Kennedy, R.E.; Cohen, W.B.; Moisen, G.G.; Schleeweis, K.; Huang, C. United states forest disturbance trends observed using landsat time series. Ecosystems 2013, 16, 1087–1104. [Google Scholar] [CrossRef][Green Version]
    黄锦星,陈洪良,吴秀花. 基于RS和GIS的早期森林损失与增益监测研究进展. 生态学报, 2011,31(8), 2312-2321.
    陈高,钟才荣,李明玉等.1990年—2020年广西北仑河口红树林扰动研究[J].遥感学报,2022,26(06):1112-1120.
    曹云,祝善友,高玚等.复合高低空间分辨率遥感影像的云南省近十年森林扰动提取[J].西北林学院学报,2015,30(06):203-209.
    Kennedy, R. E., Andreu, M. G. Tracking forest disturbance and recovery across the United States using the Landsat archive. Environmental Research Letters, 2020,15(8), 084048.
    杨辰,沈润平,郁达威等.利用遥感指数时间序列轨迹监测森林扰动[J].遥感学报,2013,17(05):1246-1263.
    Li, W., Xin, Q., Zhou, W. Review of change detection using multi-temporal satellite images: Recent advances, challenges, and future directions. Remote Sensing, 2019,11(8), 947.
    DeVries, B.; Decuyper, M.; Verbesselt, J.; Zeileis, A.; Herold, M.; Joseph, S. Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and landsat time series. Remote Sens. Environ. 2015, 169, 320–334. [Google Scholar] [CrossRef].
    Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using Landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef].
    Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A landtrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
    Healey, S. P., Cohen, W. B., Yang, Z., Krankina, O. N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 2015, 163, 9-20.
    贾亚敏,孔庆巍,邓红军,朱强,张梦杰. 长江三角洲地区生态环境脆弱性与经济发展关系研究. 地理科学进展, 2015, 34(2), 241-251.
    杨辰,沈润平.森林扰动遥感监测研究进展[J].国土资源遥感,2015,27(01):1-8.
    郁达威,沈润平,杨辰等.武宁县森林扰动及驱动因子分析[J].生态与农村环境学报,2013,29(05):581-586.
    Roy, D.P.; Kovalskyy, V.; Zhang, H.; Vermote, E.F.; Yan, L.; Kumar, S.; Egorov, A. Characterization of landsat-7 to landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70.
    钟莉,陈芸芝,汪小钦.基于Landsat时序数据的森林干扰监测[J].林业科学,2020,56(05):80-88.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江德婷,童旭东,陈冬花,刘赛赛,杜一莎,樊景威.基于GEE云计算LandTrendr算法的长三角森林扰动与增益连续监测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-25
  • 最后修改日期:2024-05-10
  • 录用日期:2024-05-11

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司