基于BP典型相关分析和多变量SOM聚类的区划算法研究
DOI:
作者:
作者单位:

1.南京信息工程大学 数学与统计学院;2.南京信息工程 大学大气与环境实验教学中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(42075068,41975176,41975087);国家重点研发计划重点专项(2018YFC1507905)


Research on Regionalization Algorithm Based on BP Canonical Correlation Analysis and Multivariate SOM Clustering
Author:
Affiliation:

1.School of Mathematics and Statistics, Nanjing University of Information Science and Technology;2.Experimental Teaching Center for Meteorology and Environment, Nanjing University of Information Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前气候区划变量较少、信息利用不充分、较少考虑气候变化影响等问题,基于机器学习和现代统计方法,提出一种数据驱动的区划算法.首先,基于Mann-Kendall检验和滑动t检验计算主变量的突变点,把研究时期进行分段;然后,基于BP典型相关选取协变量,并建立多变量SOM聚类算法,实现不同阶段的气候区划;最后,结合气候区概况来分析区划结果的实际意义,以及气候变化对气候区划的影响.实验结果表明:所提的区划算法有别于主变量的等值线分区以及人为确定阈值,而是根据SOM聚类,由数据驱动来确定区域个数以及分区,数据利用率高,区划过程更加客观合理;无需在区划过程中考虑气候背景,而是在算法过程中包含多层协变量和气候变化的影响,能够有效提高区划效率和可靠性.

    Abstract:

    This paper proposes a data-driven regionalization algorithm based on machine learning and modern statistical methods to address current issues such as limited climate regionalization variables, underutilized information, and insufficient consideration of climate change impacts. Firstly, we use the Mann-Kendall test and sliding t-test to identify change points of time series of primary variables and segment the study period accordingly. Next, we employ BP canonical correlation analysis to select covariates and establish a multivariate Self-Organizing Map (SOM) clustering algorithm to achieve climate regionalization for different stages. Finally, we analyze the practical significance of regionalization results in combination with climate zone profiles, and assess the impact of climate change on climate regionalization. Experimental results demonstrate that the proposed regionalization algorithm, driven by data rather than contour lines of primary variables or manually set thresholds, improves data utilization and ensures a more objective and rational regionalization process. By incorporating multiple covariates and climate change impacts into the algorithm, the efficiency and reliability of regionalization are effectively enhanced without considering climate background during the regionalization process.

    参考文献
    相似文献
    引证文献
引用本文

吴香华,金芯如,黎亚少,任苗苗,王巍巍.基于BP典型相关分析和多变量SOM聚类的区划算法研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-25
  • 最后修改日期:2024-04-28
  • 录用日期:2024-04-28
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司