基于误差修正和VMD-ICPA-LSSVM的短期风速预测建模
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183;TM614

基金项目:

国家自然科学基金(71961001);东华理工大学研究生创新基金(DHYC-202225)


Short term wind speed prediction modeling based on error correction and VMD-ICPA-LSSVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精准的风速预测是将风能大规模应用到电力系统中的关键,而风速序列的随机性和波动性等特点使得风速预测难度增加.为增强风速序列的可预测性,采用Logistic混沌映射策略、自适应参数调整策略以及引入变异策略对食肉植物算法(CPA)进行改进,并提出了基于误差修正和VMD-ICPA-LSSVM的短期风速预测模型.首先将气象因子作为最小二乘支持向量机(LSSVM)的输入对风速进行预测,获得误差序列.再利用K-L散度自适应地确定变分模态分解(VMD)的参数,并对误差序列进行分解.结合改进食肉植物算法(ICPA)优化LSSVM可调参数的方法来预测分解的子序列.叠加各子序列预测结果后对原始预测序列进行误差修正,进而得到最终风速预测值.实验结果表明,与其他模型相比,所提模型有着更好的预测精度和泛化性能.

    Abstract:

    Accurate wind speed prediction is the key to large-scale application of wind energy in power system,but the randomness and volatility of wind speed sequence make it difficult to predict.Herein,strategies of Logistic chaotic mapping,adaptive parameter adjustment,and the introduction of mutation are used to improve the Carnivorous Plant Algorithm (CPA),and a short-term wind speed prediction model based on error correction and VMD-ICPA-LSSVM is proposed.First,meteorological factors are used as inputs for Least Squares Support Vector Machine (LSSVM) to predict wind speed and obtain an error sequence.Then,K-L divergence is used to adaptively determine the parameters of Variational Mode Decomposition (VMD) and decompose the error sequence.Then the Improved Carnivorous Plant Algorithm (ICPA) is combined to optimize the adjustable parameters of LSSVM to predict the decomposed subsequences.The prediction results of each subsequence are stacked and error correction is performed on the original prediction sequence to obtain the final wind speed prediction values.The experimental results show that the proposed model has excellent prediction accuracy and generalization performance.

    参考文献
    相似文献
    引证文献
引用本文

钟琳,颜七笙.基于误差修正和VMD-ICPA-LSSVM的短期风速预测建模[J].南京信息工程大学学报(自然科学版),2024,16(2):247-260
ZHONG Lin, YAN Qisheng. Short term wind speed prediction modeling based on error correction and VMD-ICPA-LSSVM[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(2):247-260

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-03
  • 出版日期: 2024-03-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司