基于自适应步长策略的A*算法路径规划优化
作者:
中图分类号:

TP242

基金项目:

江苏省第五期"333工程"科研项目(BRA2020067)


Path optimization of A * algorithm based on adaptive step size strategy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对A*算法求解路径轨迹耗时长、内存占用大等问题,本文提出一种基于自适应步长策略改进A*算法.首先,根据当前点与终点的位置关系,设定寻路方向的优先级顺序,减少不合理方向上的冗余规划计算量;其次,修改到达终点的判断条件,可在轨迹规划时实现路径的跳跃;再次,针对A*算法轨迹规划效率低的问题,提出自适应步长策略;最后,针对内存占用大,以及面对大地图时可能出现的内存溢出问题,提出了八方向搜索法.实验结果表明,相较于原始的A*算法,改进的A*算法在轨迹规划效率上获得了极大的提升,同时内存占用大的问题也得到了很好的解决

    Abstract:

    To address the problem of long time-consuming and large memory consumption of A*algorithm in solving path trajectory,this paper proposes an improved A* algorithm based on adaptive step size.First,the priority order of the search direction was set according to the position relationship between the current point and the end point,with the purpose to reduce the redundant planning calculation on unreasonable directions. Second, the judgment condition for reaching the end point was modified to achieve path jumping during path planning.Then an adaptive step size strategy was proposed to improve the efficiency of A* algorithm in path planning.Finally,an eight-directional search approach was proposed to address the issues of large memory usage and possible memory overflow when facing large maps.Experimental results show that compared with original A* algorithm,the improved A* algorithm greatly improves the efficiency of path planning,and solves the problem of large memory usage.

    参考文献
    [1] 李晓旭,马兴录,王先鹏.移动机器人路径规划算法综述[J].计算机测量与控制,2022,30(7):9-19 LI Xiaoxu,MA Xinglu,WANG Xianpeng.A survey of path planning algorithms for mobile robots[J].Computer Measurement & Control,2022,30(7):9-19
    [2] 李佳伟,林娜,池荣虎.基于数据驱动高阶学习律的轮式移动机器人轨迹跟踪控制[J].南京信息工程大学学报(自然科学版),2021,13(1):66-72 LI Jiawei,LIN Na,CHI Ronghu.Data driven high order learning control for path tracking of wheeled mobile robots[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2021,13(1):66-72
    [3] 陈亚青,张智豪,李哲.无人机避障方法研究进展[J].自动化技术与应用,2020,39(12):1-6 CHEN Yaqing,ZHANG Zhihao,LI Zhe.Research progress of obstacle avoidance methods for unmanned aerial vehicles[J].Techniques of Automation and Applications,2020,39(12):1-6
    [4] 刘梓良.面向游戏地图的寻径算法的研究与实现[D].南京:东南大学,2016 LIU Ziliang.Research and implementation of path finding algorithm for game map[D].Nanjing:Southeast University,2016
    [5] 岳高峰,张萌,沈超,等.移动机器人导航规划的双向平滑A-star 法[J].中国科学(技术科学),2021,51(4):459-468 YUE Gaofeng,ZHANG Meng,SHEN Chao,et al.Bidirectional smoothing A-star method for navigation planning of mobile robots[J].Scientia Sinica (Technologica),2021,51(4):459-468
    [6] 支琛博,张爱军,杜新阳,等.改进A *算法的移动机器人全局路径规划研究[J].计算机仿真,2023,40(2):486-491 ZHI Chenbo,ZHANG Aijun,DU Xinyang,et al.Research on global path planning of mobile robot based on improved A * [J].Computer Simulation,2023,40(2):486-491
    [7] 李燕,季建楠,沈葭栎,等.基于改进蚁群算法的移动机器人路径规划方法[J].南京信息工程大学学报(自然科学版),2021,13(3):298-303 LI Yan,JI Jiannan,SHEN Jiali,et al.Mobile robot path planning based on improved ant colony algorithm[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2021,13(3):298-303
    [8] Ciesielski K C,Fãlco A X,Miranda P A V.Path-value functions for which Dijkstra's algorithm returns optimal mapping[J].Journal of Mathematical Imaging and Vision,2018,60(7):1025-1036
    [9] Xie B Y,Zhao J,Liu Y.Fault tolerant motion planning of robotic manipulators based on a nested RRT algorithm[J].The Industrial Robot,2012,39(1):40-46
    [10] 徐小强,王明勇,冒燕.基于改进人工势场法的移动机器人路径规划[J].计算机应用,2020,40(12):3508-3512 XU Xiaoqiang,WANG Mingyong,MAO Yan.Path planning of mobile robot based on improved artificial potential field method[J].Journal of Computer Applications,2020,40(12):3508-3512
    [11] 王星童,吴林鸿,赵启宇,等.粒子群-快速模拟退火算法在路径规划中的应用[J].信息技术与信息化,2021(6):13-16 WANG Xingtong,WU Linhong,ZHAO Qiyu,et al.Application of particle swarm optimization-fast simulated annealing algorithm in path planning[J].Information Technology & Informatization,2021(6):13-16
    [12] Goldberg A V,Harrelson C.Computing the shortest path:A * search meets graph theory[C]//Annual ACM-SIAM Symposium on Discrete Algorithms.New York,USA:ACM,2005:156-165
    [13] Harabor D,Grastien A.Online graph pruning for pathfinding on grid maps[C]//Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence.August 7-11,2011,San Francisco,California.New York:ACM,2011:1114-1119
    [14] 辛煜,梁华为,杜明博,等.一种可搜索无限个邻域的改进A *算法[J].机器人,2014,36(5):627-633 XIN Yu,LIANG Huawei,DU Mingbo,et al.An improved A * algorithm for searching infinite neighbourhoods[J].Robot,2014,36(5):627-633
    [15] Chaari I,Koubaa A,Bennaceur H,et al.Design and performance analysis of global path planning techniques for autonomous mobile robots in grid environments[J].International Journal of Advanced Robotic Systems,2017,14(2):1-27
    [16] 张庆,刘旭,彭力,等.融合JPS和改进A *算法的移动机器人路径规划[J].计算机科学与探索,2021,15(11):2233-2240 ZHANG Qing,LIU Xu,PENG Li,et al.Path planning for mobile robots based on JPS and improved A * algorithm[J].Journal of Frontiers of Computer Science and Technology,2021,15(11):2233-2240
    [17] Elfes A,Moravec H.Automatic occupancy grid generation from multiple sensory measurements[C]//Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems,1985:576-584
    引证文献
引用本文

付雄,李涛.基于自适应步长策略的A*算法路径规划优化[J].南京信息工程大学学报(自然科学版),2024,16(2):164-172
FU Xiong, LI Tao. Path optimization of A * algorithm based on adaptive step size strategy[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(2):164-172

复制
分享
文章指标
  • 点击次数:306
  • 下载次数: 1399
  • HTML阅读次数: 183
  • 引用次数: 0
历史
  • 收稿日期:2023-02-18
  • 在线发布日期: 2024-04-03
  • 出版日期: 2024-03-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司