基于改进蚁群算法的外卖配送路径规划研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

F252;TP18

基金项目:

中央高校基本科研业务费战略新兴资助项目(N2103028)


Takeout delivery path planning based on improved ant colony optimization algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从外卖配送员角度出发提出一种改进蚁群算法(Improved Ant Colony Optimization,IACO),在此基础上进行外卖配送路径规划研究.首先通过蚁群算法(Ant Colony Optimization,ACO)求解得到初始规划路径,然后通过大规模邻域搜索算法(Large Neighborhood Search,LNS)优化初始规划路径,通过将ACO和LNS算法结合,提高求解质量.为了验证方法的有效性,对外卖配送过程进行仿真,并且选用不同订单数量场景进行对照分析.根据最优配送方案路线图和目标罚函数的最优值可以得出,IACO算法是有效的,且可以提高外卖配送员外卖配送的效率.IACO算法不但能够提升配送的智能化水平,还从外卖配送员的角度提出一种更为人性化的配送方法,支持网络互联外卖平台派送系统的可持续化发展.

    Abstract:

    It is impossible for takeaway delivery staff to plan the takeout delivery route balancing rationality and efficiency.To address this problem,an Improved Ant Colony Optimization (IACO) algorithm is proposed.The initial routes are obtained using the Ant Colony Optimization (ACO) algorithm and then optimized using Large Neighborhood Search (LNS) algorithm.The solution quality is improved by combining the ACO algorithm with the LNS algorithm.The proposed algorithm is verified by simulating the delivery routes for different number of takeout orders.Comparative analysis shows that the proposed IACO algorithm can increase the takeout delivery efficiency,according to the optimal distribution plan and the ideal value of the objective penalty function.The proposed strategy can enhance the intelligence and promote the long-term growth of the delivery system of Internet-connected takeout platforms.

    参考文献
    相似文献
    引证文献
引用本文

唐传茵,章明理,李静红,苑莹,卫美荣.基于改进蚁群算法的外卖配送路径规划研究[J].南京信息工程大学学报(自然科学版),2024,16(2):145-154
TANG Chuanyin, ZHANG Mingli, LI Jinghong, YUAN Ying, Wei Meirong. Takeout delivery path planning based on improved ant colony optimization algorithm[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(2):145-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-03
  • 出版日期: 2024-03-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司