基于双流对比特性学习和图像多尺度退化的小目标检测方法
DOI:
作者:
作者单位:

1.中国民用航空飞行学院航空电子电气学院;2.西南技术物理研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金(No.2022M722248), 中央高校基本科研业务费(No.ZHMH2022-004、No.J2022-025、No.J2023-026), 民航飞行技术与飞行安全重点实验室自主项目(No.FZ2021ZZ03)


The small object detection method based on dual-stream contrastive feature learning and image multi-scale degradation
Author:
Affiliation:

1.Civil Aviation Flight University of China, Institute of Electronic and Electrical Engineering;2.Southwest Institute of Technical Physics

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对小目标检测任务中目标图像尺寸小、目标特征信息模糊、目标和背景难区分等问题,提出一种基于双流对比特性学习和图像多尺度退化增强的小目标检测方法。首先,将对比学习模型的输入图像进行多尺度退化增强,增强算法对小目标的捕获感知;其次,在空间域和频率域同时进行对比学习表征,以学习更具鉴别性的目标识别特征,增强模型对目标与背景的区分,从而提高小目标检测的效果。为验证所提出方法的有效性设计消融实验,并对比分析了与其他先进算法的检测性能。实验结果表明:所提出方法在MS COCO数据集上平均精度均值mAP相较基线算法提升3.6个百分点,小目标平均精度均值APS相较主流先进算法提升7.7个百分点;在VisDrone2019数据集上,所提出方法平均精度均值mAP较基线算法提升2.4个百分点,所提出方法综合性能优于基线算法与其他主流先进算法。可视化检测效果分析表明,所提出方法在小目标检测上的漏检、误检问题得到较大改善。

    Abstract:

    In addressing challenges such as small target sizes, blurred target features, and difficulty distinguishing between targets and backgrounds in small object detection tasks, a method based on dual-stream contrastive feature learning and image multi-scale degradation augmentation is proposed. Firstly, the input images of the contrastive learning model are subjected to multi-scale degradation augmentation, enhancing the model's perception of capturing small targets. Secondly, contrastive learning representations are conducted in both spatial and frequency domains simultaneously to learn more discriminative target recognition features, improving the model's ability to differentiate between targets and backgrounds and thus enhancing small object detection. To validate the effectiveness of the proposed method, ablation experiments are designed, and the detection performance is compared with other advanced algorithms. Experimental results show that the proposed method achieves a 3.6% improvement in average precision (mAP) compared to the baseline algorithm on the MS COCO datasets, a 7.7% improvement in average precision for small objects (APS) compared to mainstream advanced algorithms. On the VisDrone2019 datasets, the proposed method achieves a 2.4% increase in mAP compared to the baseline algorithm, demonstrating comprehensive performance superiority over the baseline algorithm and other mainstream advanced algorithms. Visual analysis of detection results indicates significant improvements in false negatives and false positives for small object detection using the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

王宇,何志,康朋新,涂晓光,周超,刘建华,雷霞,王文敬.基于双流对比特性学习和图像多尺度退化的小目标检测方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-25
  • 最后修改日期:2024-03-20
  • 录用日期:2024-03-20
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司