基于扩散过程的生成对抗网络图像修复算法
DOI:
作者:
作者单位:

1.沈阳工业大学 理学院;2.北方民族大学 信息与计算科学学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Generative Adversarial Network Image Restoration Algorithm Based on Diffusion Process
Author:
Affiliation:

1.School of Science, Shenyang University of Technology;2.School of Information and Computing Science, Northern University for Nationalities

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有图像修复算法,修复后的图像可能会出现纹理模糊,以及训练过程中的不稳定现象,提出一种基于扩散过程的生成对抗网络图像修复算法。将扩散模型引入至双判别器生成对抗网络,生成器生成的图像与真实图像经过前向扩散过程,得到带有高斯噪声的修复图像和真实图像,将其作为判别器的输入,提高修复质量的同时,增加了模型训练稳定性。在损失函数中引入风格损失与感知损失,来学习语义特征差异,消除动态模糊,使修复结果保留更多细节和边缘信息。在数据集CelebA和Places2上分别做了定性、定量分析及消融实验,根据评价结果及修复效果显示,所提的算法均有较好的表现。与所对比的当前修复方法相比,峰值信噪比和结构相似性分别平均提高了1.26db和1.84%,L1误差平均下降了25.7%,且根据损失函数变化看出经过扩散过程的图像修复算法训练更稳定。

    Abstract:

    In view of the existing image inpainting algorithms, the texture may be blurred and the instability in the training process of the repaired image, a generative adversarial network image inpainting algorithm based on the diffusion process was proposed. The diffusion model is introduced into the dual discriminator generation adversarial network, and the image generated by the generator and the real image go through the forward diffusion process to obtain the inverted image with Gaussian noise and the real image, which is used as the input of the discriminator, which improves the repair quality and increases the stability of model training. Style loss and perceptual loss are introduced into the loss function to learn semantic feature differences, eliminate motion blur, and retain more details and edge information in the repair results. Qualitative and quantitative analysis and ablation experiments were done on the datasets CelebA and Places2, respectively, and according to the evaluation results and restoration effects show that the proposed algorithms have better performance. Compared with the current repair method, peak signal-to-noise ratio and structural similarity were improved by an average of 1.26db and 1.84%, respectively, and the L1 error was decreased by an average of 25.7%, and according to the change of the loss function it is seen that after the The training of image restoration algorithm with diffusion process is more stable.

    参考文献
    相似文献
    引证文献
引用本文

杜洪波,袁雪丰,刘雪莉,朱立军.基于扩散过程的生成对抗网络图像修复算法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-18
  • 最后修改日期:2024-04-17
  • 录用日期:2024-04-19
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司