GNSS/SINS/视觉导航鲁棒算法
作者:
基金项目:

国家自然科学基金(42074014)


GNSS/SINS/visual navigation robust algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    全球导航卫星系统(Global Navigation Satellite System,GNSS)、捷联惯性导航系统(Strapdown Inertial Navigation System,SINS)和视觉传感器优势互补,3者信息融合可获得高精度、无漂移的导航定位信息.针对GNSS/SINS/视觉融合导航易受运动速度、光照变化、遮挡等影响导致定位精度和鲁棒性降低问题,本文在图优化框架的代价函数中加入SoftLOne鲁棒核函数,设置量测值粗差检验程序,降低离群点带来的负面影响.进一步,对量测值计算残差进行卡方检验,对超限残差降权处理,提高系统精度和鲁棒性.实验结果表明,本文算法较不施加鲁棒核函数、不采用异常值剔除策略和卡方检验的传统算法,以及加入其他鲁棒核函数的算法精度更高、鲁棒性更好,能够较大程度提升GNSS/SINS/视觉导航定位精度和鲁棒性,在大尺度环境下,未出现较大漂移误差,绝对位姿均方根误差0.735 m,绝对位姿误差标准差0.336 m.

    Abstract:

    Global Navigation Satellite System (GNSS),Strapdown Inertial Navigation System (SINS) and visual sensors can complement each other,and their information fusion can obtain high-precision,drift-free navigation and positioning information.Aiming at the problem that GNSS/SINS/vision fusion navigation is vulnerable to the impact of motion speed,light change,occlusion,etc.,which leads to the decline of navigation positioning accuracy and robustness,this paper adds the SoftLone robust kernel function to the cost function of the graph optimization framework,and sets the gross error test procedure of the measured value to reduce the negative impact of outliers.Further,the chi-square test is performed on the calculated residuals of the measured value,and the weight of the over-limit residual is reduced to improve the accuracy and robustness of the system.The experimental results show that the proposed algorithm has higher accuracy and better robustness than traditional algorithm without robust kernel function,outlier elimination strategy and chi-square test,and algorithm with other robust kernel functions.It can greatly improve the positioning accuracy and robustness of GNSS/SINS/visual navigation.In large scale scenario,there is no large drift errors,and root mean square error and standard deviation of absolute pose are 0.735 m and 0.336 m,respectively.

    参考文献
    [1] Du Z Q,Chai H Z,Xiao G R,et al.The realization and evaluation of PPP ambiguity resolution with INS aiding in marine survey[J].Marine Geodesy,2021,44(2):136-156
    [2] Tang H L,Zhang T S,Niu X J,et al.Impact of the earth rotation compensation on MEMS-IMU preintegration of factor graph optimization[J].IEEE Sensors Journal,2022,22(17):17194-17204
    [3] Mur-Artal R,Tardós J D.Visual-inertial monocular SLAM with map reuse[J].IEEE Robotics and Automation Letters,2017,2(2):796-803
    [4] Mourikis A,Roumeliotis S.A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings IEEE International Conference on Robotics and Automation.April 10-14,Rome,Italy.IEEE,2007:3565-3572
    [5] Qin T,Li P L,Shen S J.VINS-mono:a robust and versatile monocular visual-inertial state estimator[J].IEEE Transactions on Robotics,2018,34(4):1004-1020
    [6] 胡凯,吴佳胜,郑翡,等.视觉里程计研究综述[J].南京信息工程大学学报(自然科学版),2021,13(3):269-280 HU Kai,WU Jiasheng,ZHENG Fei,et al.A survey of visual odometry[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2021,13(3):269-280
    [7] Campos C,Elvira R,Rodríguez J J G,et al.ORB-SLAM3:an accurate open-source library for visual,visual-inertial,and multimap SLAM[J].IEEE Transactions on Robotics,2021,37(6):1874-1890
    [8] Liao J C,Li X X,Wang X B,et al.Enhancing navigation performance through visual-inertial odometry in GNSS-degraded environment[J].GPS Solutions,2021,25(2):1-18
    [9] He M W,Rajkumar R R.Extended VINS-mono:a systematic approach for absolute and relative vehicle localization in large-scale outdoor environments[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).September 27-October 1,2021,Prague,Czech Republic.IEEE,2021:4861-4868
    [10] Mascaro R,Teixeira L,Hinzmann T,et al.GOMSF:Graph-optimization based multi-sensor fusion for robust UAV pose estimation[C]//2018 IEEE International Conference on Robotics and Automation (ICRA).May 21-25,2018,Brisbane,QLD,Australia.IEEE,2018:1421-1428
    [11] Leutenegger S,Furgale P,Rabaud V,et al.Keyframe-based visual-inertial SLAM using nonlinear optimization[C]//Proceedings of Robotics:Science and Systems IX,2013.DOI:10.15607/RSS.2013.IX.037
    [12] Cao S Z,Lu X Y,Shen S J.GVINS:tightly coupled GNSS-visual-inertial fusion for smooth and consistent state estimation[J].IEEE Transactions on Robotics,2022,38(4):2004-2021
    [13] Li T,Pei L,Xiang Y,et al.P3-VINS:tightly-coupled PPP/INS/visual SLAM based on optimization approach[J].IEEE Robotics and Automation Letters,2022,7(3):7021-7027
    [14] Strasdat H,Montiel J M M,Davison A J.Visual SLAM:why filter?[J].Image and Vision Computing,2012,30(2):65-77
    [15] 蒋郡祥.基于图优化的视觉/惯性/GNSS融合导航方法研究[D].武汉:武汉大学,2021 JIANG Junxiang.Research on visual/inertial/GNSS fusion navigation method based on graph optimization[D].Wuhan:Wuhan University,2021
    [16] Jiang J X,Niu X J,Guo R N,et al.A hybrid sliding window optimizer for tightly-coupled vision-aided inertial navigation system[J].Sensors (Basel,Switzerland),2019,19(15):3418
    [17] Jiang J X,Niu X J,Liu J N.Improved IMU preintegration with gravity change and earth rotation for optimization-based GNSS/VINS[J].Remote Sensing,2020,12(18):3048
    [18] Sturm J,Engelhard N,Endres F,et al.A benchmark for the evaluation of RGB-D SLAM systems[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.October 7-12,2012,Vilamoura-Algarve,Portugal.IEEE,2012:573-580
    [19] 杨元喜.综合PNT体系及其关键技术[J].测绘学报,2016,45(5):505-510 YANG Yuanxi.Concepts of comprehensive PNT and related key technologies[J].Acta Geodaetica et Cartographica Sinica,2016,45(5):505-510
    [20] 杨元喜.弹性PNT基本框架[J].测绘学报,2018,47(7):893-898 YANG Yuanxi.Elastic PNT basic framework[J].Acta Geodaetica et Cartographica Sinica,2018,47(7):893-898
    [21] 杨元喜,杨诚,任夏.PNT智能服务[J].测绘学报,2021,50(8):1006-1012 YANG Yuanxi,YANG Cheng,REN Xia.PNT intelligent services[J].Acta Geodaetica et Cartographica Sinica,2021,50(8):1006-1012
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李明,柴洪洲,郑乃铨. GNSS/SINS/视觉导航鲁棒算法[J].南京信息工程大学学报(自然科学版),2024,16(1):114-119
LI Ming, CHAI Hongzhou, ZHENG Naiquan. GNSS/SINS/visual navigation robust algorithm[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(1):114-119

复制
分享
文章指标
  • 点击次数:154
  • 下载次数: 1193
  • HTML阅读次数: 119
  • 引用次数: 0
历史
  • 收稿日期:2023-02-14
  • 在线发布日期: 2024-01-20
  • 出版日期: 2024-01-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司